Abstract
Cortisol exhibits typical ultradian and circadian rhythm and disturbances in its secretory pattern have been described in stress-related pathology. The aim of this thesis was to dissect the underlying structure of cortisol pulsatility and to develop tools to investigate the effects of this pulsatility on immune cell trafficking and the responsiveness of the neuroendocrine system and GR target genes to stress.
Deconvolution modeling was set up as a tool for investigation of the pulsatile secretion underlying the ultradian cortisol rhythm. This further allowed us to investigate the role of the single cortisol pulses on the immune cell trafficking and the role of induced cortisol pulses on the kinetics of expression of GR target genes. The development of these three tools, would allow to induce and investigate in future the significance of single cortisol pulses for health and disease.
Deconvolution modeling was set up as a tool for investigation of the pulsatile secretion underlying the ultradian cortisol rhythm. This further allowed us to investigate the role of the single cortisol pulses on the immune cell trafficking and the role of induced cortisol pulses on the kinetics of expression of GR target genes. The development of these three tools, would allow to induce and investigate in future the significance of single cortisol pulses for health and disease.
Original language | English |
---|---|
Supervisors/Advisors |
|
Award date | 1 Oct 2012 |
Publisher | |
Publication status | Published - 1 Oct 2012 |