TY - JOUR
T1 - Transcriptional response to cardiac injury in the zebrafish
T2 - Systematic identification of genes with highly concordant activity across in vivo models
AU - Rodius, Sophie
AU - Nazarov, Petr V.
AU - Nepomuceno-Chamorro, Isabel A.
AU - Jeanty, Céline
AU - González-Rosa, Juan M.
AU - Ibberson, Mark
AU - da Costa, Ricardo M.B.
AU - Xenarios, Ioannis
AU - Mercader, Nadia
AU - Azuaje, Francisco
N1 - Funding Information:
This research was supported by the INTER program of Luxembourg’s National Research Fund (FNR) and the Swiss National Research Foundation (SNF), INFUSED project (www.infused-project.eu). NM acknowledges support from Spanish Ministry of Economy and Competivity (BFU2011-25297 and TerCel projects) and the Comunidad de Madrid (P2010/BMD-2321).
Publisher Copyright:
© 2014 Rodius et al.; licensee BioMed Central Ltd.
PY - 2014/10/3
Y1 - 2014/10/3
N2 - Background: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans.Results: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans.Conclusions: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.
AB - Background: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans.Results: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans.Conclusions: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.
KW - Heart regeneration
KW - Myocardial infarction
KW - Transcriptional association networks
KW - Transcriptional responses
KW - Ventricular amputation
KW - Ventricular cryoinjury
KW - Zebrafish
UR - http://www.scopus.com/inward/record.url?scp=84910074878&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-15-852
DO - 10.1186/1471-2164-15-852
M3 - Article
C2 - 25280539
AN - SCOPUS:84910074878
SN - 1471-2164
VL - 15
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 852
ER -