Towards mobile gait analysis: Concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters

Felix Kluge*, Heiko Gaßner, Julius Hannink, Cristian Pasluosta, Jochen Klucken, Björn M. Eskofier

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

105 Citations (Scopus)

Abstract

The purpose of this study was to assess the concurrent validity and test–retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson’s disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a reference camera-based motion capture system concerning concurrent validity. Test–retest reliability was assessed for five healthy subjects at three different days in a two week period. The two systems were highly correlated for all gait parameters (r > 0.93). The bias for stride time was 0 ± 16 ms and for stride length was 1.4 ± 6.7 cm. No systematic range dependent errors were observed and no significant changes existed between healthy subjects and PD patients. Test-retest reliability was excellent for all parameters (intraclass correlation (ICC) > 0.81) except for gait velocity (ICC > 0.55). The sensor-based system was able to accurately capture spatio-temporal gait parameters as compared to the reference camera-based system for normal and impaired gait. The system’s high retest reliability renders the use in recurrent clinical measurements and in long-term applications feasible.

Original languageEnglish
Article number1522
JournalSensors
Volume17
Issue number7
DOIs
Publication statusPublished - Jul 2017
Externally publishedYes

Keywords

  • Accelerometer
  • Ambulatory motion tracking
  • Gyroscope
  • Human gait
  • Inertial measurement unit
  • Movement analysis
  • Sensors
  • Stride parameters
  • Walking
  • Wearable sensors

Fingerprint

Dive into the research topics of 'Towards mobile gait analysis: Concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters'. Together they form a unique fingerprint.

Cite this