TY - JOUR
T1 - The Processing Routes Determined by Negatively Charged Residues in DR1-Restricted T Cell Determinants
AU - Robadey, Chantal
AU - Ammerlaan, Wim
AU - Muller, Claude
AU - Cloutier, Isabelle
AU - Sékaly, Rafick Pierre
AU - Haefliger, Jacques Antoine
AU - Demotz, Stéphane
PY - 1997/10/1
Y1 - 1997/10/1
N2 - The presentation pathways followed by DR1-restricted determinants from the fusion protein of measles virus were studied. By assessing the capacity of various APC preparations to stimulate fusion protein-specific T cells, it was shown that the determinant contained within the fusion protein sequence 254-268 (F254) relies on newly synthesized DR1 protein for its presentation. By contrast, the determinant contained within the fusion protein sequence 314-328 (F314) is captured by DR1 protein recycled , from the plasma membrane. In vitro binding analyses showed that the F254 and F314 peptides optimally bind to DR1 at pH 4 and pH 5, respectively. In addition, it was found that binding of the F254 peptide to DR1 is much poorer at pH 7 than at pH 4, while binding of the F314 peptide was decreased only moderately at pH 7 as compared with pH 5. Substitution of the glutamic acid 261 for an alanine in the F254 peptide resulted in an analogue with an improved capacity of binding to DR1 at neutral pH. By contrast, replacement of the valine 319 by a glutamic acid in the F314 peptide generated an analogue with a decreased ; binding capacity at pH 7. These findings indicated that determinants that do not bear acidic residues are captured efficiently by DR1 molecules over a broader range of pH than determinants containing acidic residues. Binding analyses between DR1 and four additional peptides further supported this conclusion. Altogether, these results suggested that acidic residues, by tuning the optimal pH for the assembly of peptide-DR1 complexes, determine the processing pathway followed by the determinants.
AB - The presentation pathways followed by DR1-restricted determinants from the fusion protein of measles virus were studied. By assessing the capacity of various APC preparations to stimulate fusion protein-specific T cells, it was shown that the determinant contained within the fusion protein sequence 254-268 (F254) relies on newly synthesized DR1 protein for its presentation. By contrast, the determinant contained within the fusion protein sequence 314-328 (F314) is captured by DR1 protein recycled , from the plasma membrane. In vitro binding analyses showed that the F254 and F314 peptides optimally bind to DR1 at pH 4 and pH 5, respectively. In addition, it was found that binding of the F254 peptide to DR1 is much poorer at pH 7 than at pH 4, while binding of the F314 peptide was decreased only moderately at pH 7 as compared with pH 5. Substitution of the glutamic acid 261 for an alanine in the F254 peptide resulted in an analogue with an improved capacity of binding to DR1 at neutral pH. By contrast, replacement of the valine 319 by a glutamic acid in the F314 peptide generated an analogue with a decreased ; binding capacity at pH 7. These findings indicated that determinants that do not bear acidic residues are captured efficiently by DR1 molecules over a broader range of pH than determinants containing acidic residues. Binding analyses between DR1 and four additional peptides further supported this conclusion. Altogether, these results suggested that acidic residues, by tuning the optimal pH for the assembly of peptide-DR1 complexes, determine the processing pathway followed by the determinants.
UR - http://www.scopus.com/inward/record.url?scp=0031255054&partnerID=8YFLogxK
M3 - Article
C2 - 9317122
AN - SCOPUS:0031255054
SN - 0022-1767
VL - 159
SP - 3238
EP - 3246
JO - Journal of Immunology
JF - Journal of Immunology
IS - 7
ER -