The Effects of an Individualized Smartphone-Based Exercise Program on Self-defined Motor Tasks in Parkinson Disease: Pilot Interventional Study

Heiko Gaßner*, Jana Friedrich, Alisa Masuch, Jelena Jukic, Sabine Stallforth, Martin Regensburger, Franz Marxreiter, Jürgen Winkler, Jochen Klucken

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Background: Bradykinesia and rigidity are prototypical motor impairments of Parkinson disease (PD) highly influencing everyday life. Exercise training is an effective treatment alternative for motor symptoms, complementing dopaminergic medication. High frequency training is necessary to yield clinically relevant improvements. Exercise programs need to be tailored to individual symptoms and integrated in patients’ everyday life. Due to the COVID-19 pandemic, exercise groups in outpatient setting were largely reduced. Developing remotely supervised solutions is therefore of significant importance. Objective: This pilot study aimed to evaluate the feasibility of a digital, home-based, high-frequency exercise program for patients with PD. Methods: In this pilot interventional study, patients diagnosed with PD received 4 weeks of personalized exercise at home using a smartphone app, remotely supervised by specialized therapists. Exercises were chosen based on the patient-defined motor impairment and depending on the patients’ individual capacity (therapists defined 3-5 short training sequences for each participant). In a first education session, the tailored exercise program was explained and demonstrated to each participant and they were thoroughly introduced to the smartphone app. Intervention effects were evaluated using the Unified Parkinson Disease Rating Scale, part III; standardized sensor-based gait analysis; Timed Up and Go Test; 2-minute walk test; quality of life assessed by the Parkinson Disease Questionnaire; and patient-defined motor tasks of daily living. Usability of the smartphone app was assessed by the System Usability Scale. All participants gave written informed consent before initiation of the study. Results: In total, 15 individuals with PD completed the intervention phase without any withdrawals or dropouts. The System Usability Scale reached an average score of 72.2 (SD 6.5) indicating good usability of the smartphone app. Patient-defined motor tasks of daily living significantly improved by 40% on average in 87% (13/15) of the patients. There was no significant impact on the quality of life as assessed by the Parkinson Disease Questionnaire (but the subsections regarding mobility and social support improved by 14% from 25 to 21 and 19% from 15 to 13, respectively). Motor symptoms rated by Unified Parkinson Disease Rating Scale, part III, did not improve significantly but a descriptive improvement of 14% from 18 to 16 could be observed. Clinically relevant changes in Timed Up and Go test, 2-minute walk test, and sensor-based gait parameters or functional gait tests were not observed. Conclusions: This pilot interventional study presented that a tailored, digital, home-based, and high-frequency exercise program over 4 weeks was feasible and improved patient-defined motor activities of daily life based on a self-developed patient-defined impairment score indicating that digital exercise concepts may have the potential to beneficially impact motor symptoms of daily living. Future studies should investigate sustainability effects in controlled study designs conducted over a longer period.

Original languageEnglish
Article numbere38994
JournalJMIR Rehabilitation and Assistive Technologies
Volume9
Issue number4
DOIs
Publication statusPublished - Dec 2022

Keywords

  • exercise
  • mobile phone
  • Parkinson disease
  • patient-defined outcome measure
  • telemedicine
  • wearable sensors

Fingerprint

Dive into the research topics of 'The Effects of an Individualized Smartphone-Based Exercise Program on Self-defined Motor Tasks in Parkinson Disease: Pilot Interventional Study'. Together they form a unique fingerprint.

Cite this