TY - JOUR
T1 - The Effects of an Individualized Smartphone-Based Exercise Program on Self-defined Motor Tasks in Parkinson Disease
T2 - Pilot Interventional Study
AU - Gaßner, Heiko
AU - Friedrich, Jana
AU - Masuch, Alisa
AU - Jukic, Jelena
AU - Stallforth, Sabine
AU - Regensburger, Martin
AU - Marxreiter, Franz
AU - Winkler, Jürgen
AU - Klucken, Jochen
N1 - Funding Information:
JW reports personal fees outside of the submitted work from Desitin Arzneimittel GmbH and Biogen GmbH. JK received an Attract fellow grant (Digital Health Pathways in PD) by the Fraunhofer Gesellschaft. JK holds ownerships of Portabiles HealthCare Technologies GmbH and Portabiles GmbH and received compensation and honoraria in the last 5 years from serving on scientific advisory boards for RoxHealth GmbH and Als Digital-Medizinisches Anwendungs-Centrum GmbH as well as from lecturing from Ever Neuro Pharma GmbH. HG, MR, and JW received an institutional research grant by the Federal Ministry of Education and Research (project: treatHSP, 01GM1905B). HG further received support by the Medical Research Foundation at the University Hospital Erlangen and the Förderverein für HSP-Forschung e.V. outside of the submitted work. HG and FM received an institutional research grant by the Huntington-Stiftung of the Deutsche Huntington Hilfe e.V. MR and FM are supported by the Interdisciplinary Center for Clinical Research of the FAU, Clinician Scientist program.
Funding Information:
The authors would like to thank all patients for their participation in this study. This study was supported by Manfred-Roth-Stiftung and Forschungsstiftung Medizin at the University Hospital Erlangen, Germany. HG, JK, and JW are supported by the Mobilise-D project that has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 820820. This joint undertaking receives support from the European Union’s Horizon 2020 research and innovation program and the European Federation of Pharmaceutical Industries and Associations. Content in this publication reflects the authors’ views and neither the Innovative Medicines Initiative nor European Union, European Federation of Pharmaceutical Industries and Associations, or any associated partners are responsible for any use that may be made of the information contained herein. The authors further acknowledge financial support by Deutsche Forschungsgemeinschaft and Friedrich-Alexander-Universität Erlangen-Nürnberg within the funding program “Open Access Publication Funding.” This work was supported by the Fraunhofer Internal Programs under grant Attract 044-602140 und 044-602150. Further, this work was (partly) funded by the Deutsche Forschungsgemeinschaft (German Research Foundation)—SFB 1483—Project-ID 442419336, EmpkinS, and “Mobility_APP” grant 438496663. The authors would like to thank Kathrin Kinscher and Teresa Greinwalder for their excellent assistance with performing gait analysis. NeuroSys GmbH supported with configuration of the smartphone app but was not involved in study design, recruitment, execution, data analysis or interpretation, or preparation of the manuscript.
Publisher Copyright:
© Heiko Gaßner, Jana Friedrich, Alisa Masuch, Jelena Jukic, Sabine Stallforth, Martin Regensburger, Franz Marxreiter, Jürgen Winkler, Jochen Klucken.
PY - 2022/12
Y1 - 2022/12
N2 - Background: Bradykinesia and rigidity are prototypical motor impairments of Parkinson disease (PD) highly influencing everyday life. Exercise training is an effective treatment alternative for motor symptoms, complementing dopaminergic medication. High frequency training is necessary to yield clinically relevant improvements. Exercise programs need to be tailored to individual symptoms and integrated in patients’ everyday life. Due to the COVID-19 pandemic, exercise groups in outpatient setting were largely reduced. Developing remotely supervised solutions is therefore of significant importance. Objective: This pilot study aimed to evaluate the feasibility of a digital, home-based, high-frequency exercise program for patients with PD. Methods: In this pilot interventional study, patients diagnosed with PD received 4 weeks of personalized exercise at home using a smartphone app, remotely supervised by specialized therapists. Exercises were chosen based on the patient-defined motor impairment and depending on the patients’ individual capacity (therapists defined 3-5 short training sequences for each participant). In a first education session, the tailored exercise program was explained and demonstrated to each participant and they were thoroughly introduced to the smartphone app. Intervention effects were evaluated using the Unified Parkinson Disease Rating Scale, part III; standardized sensor-based gait analysis; Timed Up and Go Test; 2-minute walk test; quality of life assessed by the Parkinson Disease Questionnaire; and patient-defined motor tasks of daily living. Usability of the smartphone app was assessed by the System Usability Scale. All participants gave written informed consent before initiation of the study. Results: In total, 15 individuals with PD completed the intervention phase without any withdrawals or dropouts. The System Usability Scale reached an average score of 72.2 (SD 6.5) indicating good usability of the smartphone app. Patient-defined motor tasks of daily living significantly improved by 40% on average in 87% (13/15) of the patients. There was no significant impact on the quality of life as assessed by the Parkinson Disease Questionnaire (but the subsections regarding mobility and social support improved by 14% from 25 to 21 and 19% from 15 to 13, respectively). Motor symptoms rated by Unified Parkinson Disease Rating Scale, part III, did not improve significantly but a descriptive improvement of 14% from 18 to 16 could be observed. Clinically relevant changes in Timed Up and Go test, 2-minute walk test, and sensor-based gait parameters or functional gait tests were not observed. Conclusions: This pilot interventional study presented that a tailored, digital, home-based, and high-frequency exercise program over 4 weeks was feasible and improved patient-defined motor activities of daily life based on a self-developed patient-defined impairment score indicating that digital exercise concepts may have the potential to beneficially impact motor symptoms of daily living. Future studies should investigate sustainability effects in controlled study designs conducted over a longer period.
AB - Background: Bradykinesia and rigidity are prototypical motor impairments of Parkinson disease (PD) highly influencing everyday life. Exercise training is an effective treatment alternative for motor symptoms, complementing dopaminergic medication. High frequency training is necessary to yield clinically relevant improvements. Exercise programs need to be tailored to individual symptoms and integrated in patients’ everyday life. Due to the COVID-19 pandemic, exercise groups in outpatient setting were largely reduced. Developing remotely supervised solutions is therefore of significant importance. Objective: This pilot study aimed to evaluate the feasibility of a digital, home-based, high-frequency exercise program for patients with PD. Methods: In this pilot interventional study, patients diagnosed with PD received 4 weeks of personalized exercise at home using a smartphone app, remotely supervised by specialized therapists. Exercises were chosen based on the patient-defined motor impairment and depending on the patients’ individual capacity (therapists defined 3-5 short training sequences for each participant). In a first education session, the tailored exercise program was explained and demonstrated to each participant and they were thoroughly introduced to the smartphone app. Intervention effects were evaluated using the Unified Parkinson Disease Rating Scale, part III; standardized sensor-based gait analysis; Timed Up and Go Test; 2-minute walk test; quality of life assessed by the Parkinson Disease Questionnaire; and patient-defined motor tasks of daily living. Usability of the smartphone app was assessed by the System Usability Scale. All participants gave written informed consent before initiation of the study. Results: In total, 15 individuals with PD completed the intervention phase without any withdrawals or dropouts. The System Usability Scale reached an average score of 72.2 (SD 6.5) indicating good usability of the smartphone app. Patient-defined motor tasks of daily living significantly improved by 40% on average in 87% (13/15) of the patients. There was no significant impact on the quality of life as assessed by the Parkinson Disease Questionnaire (but the subsections regarding mobility and social support improved by 14% from 25 to 21 and 19% from 15 to 13, respectively). Motor symptoms rated by Unified Parkinson Disease Rating Scale, part III, did not improve significantly but a descriptive improvement of 14% from 18 to 16 could be observed. Clinically relevant changes in Timed Up and Go test, 2-minute walk test, and sensor-based gait parameters or functional gait tests were not observed. Conclusions: This pilot interventional study presented that a tailored, digital, home-based, and high-frequency exercise program over 4 weeks was feasible and improved patient-defined motor activities of daily life based on a self-developed patient-defined impairment score indicating that digital exercise concepts may have the potential to beneficially impact motor symptoms of daily living. Future studies should investigate sustainability effects in controlled study designs conducted over a longer period.
KW - exercise
KW - mobile phone
KW - Parkinson disease
KW - patient-defined outcome measure
KW - telemedicine
KW - wearable sensors
UR - http://www.scopus.com/inward/record.url?scp=85145294274&partnerID=8YFLogxK
UR - https://pubmed.ncbi.nlm.nih.gov/36378510
U2 - 10.2196/38994
DO - 10.2196/38994
M3 - Article
C2 - 36378510
SN - 2369-2529
VL - 9
JO - JMIR Rehabilitation and Assistive Technologies
JF - JMIR Rehabilitation and Assistive Technologies
IS - 4
M1 - e38994
ER -