TY - JOUR
T1 - Telomestatin-induced telomere uncapping is modulated by POT1 through G-overhang extension in HT1080 human tumor cells
AU - Gomez, Dennis
AU - Wenner, Thomas
AU - Brassart, Bertrand
AU - Douarre, Céline
AU - O'Donohue, Marie Françoise
AU - El Khoury, Victoria
AU - Shin-Ya, Kazuo
AU - Morjani, Hamid
AU - Trentesaux, Chantal
AU - Riou, Jean François
PY - 2006/12/15
Y1 - 2006/12/15
N2 - Telomestatin is a potent G-quadruplex ligand that interacts with the 3′ telomeric overhang, leading to its degradation, and induces a delayed senescence and apoptosis of cancer cells. POT1 and TRF2 were recently identified as specific telomere-binding proteins involved in telomere capping and t-loop maintenance and whose interaction with telomeres is modulated by telomestatin. We show here that the treatment of HT1080 human tumor cells by telomestatin induces a rapid decrease of the telomeric G-overhang and of the double-stranded telomeric repeats. Telomestatin treatment also provokes a strong decrease of POT1 and TRF2 from their telomere sites, suggesting that the ligand triggers the uncapping of the telomere ends. The effect of the ligand is associated with an increase of the γ-H2AX foci, one part of them colocalizing at telomeres, thus indicating the occurrence of a DNA damage response at the telomere, but also the presence of additional DNA targets for telomestatin. Interestingly, the expression of GFP-POT1 in HT1080 cells increases both telomere and G-overhang length. As compared with HT1080 cells, HT1080GFP-POT1 cells presented a resistance to telomestatin treatment characterized by a protection to the telomestatin-induced growth inhibition and the G-overhang shortening. This protection is related to the initial G-overhang length rather than to its degradation rate and is overcome by increased telomestatin concentration. Altogether these results suggest that telomestatin induced a telomere dysfunction in which G-overhang length and POT1 level are important factors but also suggest the presence of additional DNA sites of action for the ligand.
AB - Telomestatin is a potent G-quadruplex ligand that interacts with the 3′ telomeric overhang, leading to its degradation, and induces a delayed senescence and apoptosis of cancer cells. POT1 and TRF2 were recently identified as specific telomere-binding proteins involved in telomere capping and t-loop maintenance and whose interaction with telomeres is modulated by telomestatin. We show here that the treatment of HT1080 human tumor cells by telomestatin induces a rapid decrease of the telomeric G-overhang and of the double-stranded telomeric repeats. Telomestatin treatment also provokes a strong decrease of POT1 and TRF2 from their telomere sites, suggesting that the ligand triggers the uncapping of the telomere ends. The effect of the ligand is associated with an increase of the γ-H2AX foci, one part of them colocalizing at telomeres, thus indicating the occurrence of a DNA damage response at the telomere, but also the presence of additional DNA targets for telomestatin. Interestingly, the expression of GFP-POT1 in HT1080 cells increases both telomere and G-overhang length. As compared with HT1080 cells, HT1080GFP-POT1 cells presented a resistance to telomestatin treatment characterized by a protection to the telomestatin-induced growth inhibition and the G-overhang shortening. This protection is related to the initial G-overhang length rather than to its degradation rate and is overcome by increased telomestatin concentration. Altogether these results suggest that telomestatin induced a telomere dysfunction in which G-overhang length and POT1 level are important factors but also suggest the presence of additional DNA sites of action for the ligand.
UR - http://www.scopus.com/inward/record.url?scp=33845994055&partnerID=8YFLogxK
U2 - 10.1074/jbc.M605828200
DO - 10.1074/jbc.M605828200
M3 - Article
C2 - 17050546
AN - SCOPUS:33845994055
SN - 0021-9258
VL - 281
SP - 38721
EP - 38729
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -