Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination

Nina M.S. Gustafsson*, Katarina Färnegårdh, Nadilly Bonagas, Anna Huguet Ninou, Petra Groth, Elisee Wiita, Mattias Jönsson, Kenth Hallberg, Jemina Lehto, Rosa Pennisi, Jessica Martinsson, Carina Norström, Jessica Hollers, Johan Schultz, Martin Andersson, Natalia Markova, Petra Marttila, Baek Kim, Martin Norin, Thomas OlinThomas Helleday

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

86 Citations (Scopus)

Abstract

The glycolytic PFKFB3 enzyme is widely overexpressed in cancer cells and an emerging anti-cancer target. Here, we identify PFKFB3 as a critical factor in homologous recombination (HR) repair of DNA double-strand breaks. PFKFB3 rapidly relocates into ionizing radiation (IR)-induced nuclear foci in an MRN-ATM-γH2AX-MDC1-dependent manner and co-localizes with DNA damage and HR repair proteins. PFKFB3 relocalization is critical for recruitment of HR proteins, HR activity, and cell survival upon IR. We develop KAN0438757, a small molecule inhibitor that potently targets PFKFB3. Pharmacological PFKFB3 inhibition impairs recruitment of ribonucleotide reductase M2 and deoxynucleotide incorporation upon DNA repair, and reduces dNTP levels. Importantly, KAN0438757 induces radiosensitization in transformed cells while leaving non-transformed cells unaffected. In summary, we identify a key role for PFKFB3 enzymatic activity in HR repair and present KAN0438757, a selective PFKFB3 inhibitor that could potentially be used as a strategy for the treatment of cancer.

Original languageEnglish
Article number3872
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination'. Together they form a unique fingerprint.

Cite this