TY - JOUR
T1 - T cell immunosenescence after early life adversity
T2 - Association with cytomegalovirus infection
AU - Elwenspoek, Martha M.C.
AU - Sias, Krystel
AU - Hengesch, Xenia
AU - Schaan, Violetta K.
AU - Leenen, Fleur A.D.
AU - Adams, Philipp
AU - Mériaux, Sophie B.
AU - Schmitz, Stephanie
AU - Bonnemberger, Fanny
AU - Ewen, Anouk
AU - Schächinger, Hartmut
AU - Vögele, Claus
AU - Muller, Claude P.
AU - Turner, Jonathan D.
N1 - Funding Information:
Special thanks go to Coralie Guerin and Lea Guyonnet from the National Cytometry Platform, and Dirk Brenner (LIH) who contributed to the setup of the flow cytometry experiments with fruitful discussions and practical advice. Myriam Alexandre, J?r?me Graas, Jean-Yves Ferrand, Roxane Batutu, and Graziella Ambroset from the Clinical and Epidemiological Investigations Center (LIH) and Johannes Finke (University of Trier) assisted in sample collection during the first clinical visit. Stephen Senn and Anna Schritz from the Competence Center for Methodology and Statistics (LIH) advised on statistical analyses. Martyna Marynowska assisted in the laboratory (LIH). This study was funded by the Luxembourg National Research Fund (C12/BM/3985792) and the Ministry of Higher Education and Research of Luxembourg. VS was funded by the University of Luxembourg and an AFR PhD fellowship (No 9825384) and XH by DFG funding (SCHA1067/3-1). These funding bodies played no role in the writing of this manuscript, nor in the design, data collection, analysis, and interpretation of our data. JT is a management board member of the EU-funded COST action CA1406.
Publisher Copyright:
© 2017 Elwenspoek, Sias, Hengesch, Schaan, Leenen, Adams, Mériaux, Schmitz, Bonnemberger, Ewen, Schächinger, Vögele, Muller and Turner.
PY - 2017/10/17
Y1 - 2017/10/17
N2 - Early life adversity (ELA) increases the risk for multiple age-related diseases, such as diabetes type 2 and cardiovascular disease. As prevalence is high, ELA poses a major and global public health problem. Immunosenescence, or aging of the immune system, has been proposed to underlie the association between ELA and long-term health consequences. However, it is unclear what drives ELA-associated immunosenescence and which cells are primarily affected. We investigated different biomarkers of immunosenescence in a healthy subset of the EpiPath cohort. Participants were either parent-reared (Ctrl, n = 59) or had experienced separation from their parents in early childhood and were subsequently adopted (ELA, n = 18). No difference was observed in telomere length or in methylation levels of age-related CpGs in whole blood, containing a heterogeneous mixture of immune cells. However, when specifically investigating T cells, we found a higher expression of senescence markers (CD57) in ELA. In addition, senescent T cells (CD57+) in ELA had an increased cytolytic potential compared to senescent cells in controls. With a mediation analysis we demonstrated that cytomegalovirus (CMV) infection, which is an important driving force of immunosenescence, largely accounted for elevated CD57 expression observed in ELA. Leukocyte telomere length may obscure cell-specific immunosenescence; here, we demonstrated that the use of cell surface markers of senescence can be more informative. Our data suggest that ELA may increase the risk of CMV infection in early childhood, thereby mediating the effect of ELA on T cell-specific immunosenescence. Thus, future studies should include CMV as a confounder or selectively investigate CMV seronegative cohorts.
AB - Early life adversity (ELA) increases the risk for multiple age-related diseases, such as diabetes type 2 and cardiovascular disease. As prevalence is high, ELA poses a major and global public health problem. Immunosenescence, or aging of the immune system, has been proposed to underlie the association between ELA and long-term health consequences. However, it is unclear what drives ELA-associated immunosenescence and which cells are primarily affected. We investigated different biomarkers of immunosenescence in a healthy subset of the EpiPath cohort. Participants were either parent-reared (Ctrl, n = 59) or had experienced separation from their parents in early childhood and were subsequently adopted (ELA, n = 18). No difference was observed in telomere length or in methylation levels of age-related CpGs in whole blood, containing a heterogeneous mixture of immune cells. However, when specifically investigating T cells, we found a higher expression of senescence markers (CD57) in ELA. In addition, senescent T cells (CD57+) in ELA had an increased cytolytic potential compared to senescent cells in controls. With a mediation analysis we demonstrated that cytomegalovirus (CMV) infection, which is an important driving force of immunosenescence, largely accounted for elevated CD57 expression observed in ELA. Leukocyte telomere length may obscure cell-specific immunosenescence; here, we demonstrated that the use of cell surface markers of senescence can be more informative. Our data suggest that ELA may increase the risk of CMV infection in early childhood, thereby mediating the effect of ELA on T cell-specific immunosenescence. Thus, future studies should include CMV as a confounder or selectively investigate CMV seronegative cohorts.
KW - CD57
KW - Cytomegalovirus
KW - Early life adversity
KW - Immunosenescence
KW - T cells
KW - Telomere length
UR - http://www.scopus.com/inward/record.url?scp=85031736995&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2017.01263
DO - 10.3389/fimmu.2017.01263
M3 - Article
AN - SCOPUS:85031736995
SN - 1664-3224
VL - 8
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - OCT
M1 - 1263
ER -