TY - JOUR
T1 - Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region
T2 - Identification, and tissue distribution of multiple new human exon 1
AU - Turner, Jonathan D.
AU - Muller, Claude P.
PY - 2005/10
Y1 - 2005/10
N2 - The 5′ untranslated region (UTR) of the glucocorticoid receptor (GR) plays a key role in determining tissue-specific expression and protein isoforms. Analysis of the 5′ UTR of the human GR (hGR) has revealed 11 splice variants of the hGR exon 1, based on seven exon 1s, four of which (1-D to 1-F and 1-H) were previously unknown. All of the exon 1 variants have unique splice donor sites and share a common exon 2 splice acceptor site. Due to an upstream in-frame TGA stop codon the predicted translation from all splice variants is identical. The four new exon 1s show remarkable similarity with their rat homologues. Exon 1-D starts and finishes 17 and 36 bp upstream of the corresponding ends of the rat exon 14. Exon 1-E is only 6 bp longer than its homologue exon 15. Exon 1-F contains two short inserts of 11 and 6 bp when compared with the rat 17. 1-H is 18 bp longer than the corresponding rat 111. In addition to these new exons, we found that the human exon 1-C occurs as three distinct splice variants, covering the region homologous to the rat exons 19 and 110. All of the alternative hGR exons 1s presented here were found to be transcribed in human tissue. The human hippocampus expresses mRNA of all the exon 1 variants, while the expression of the other exon 1s seems to be tissue specific. While exon 1-D is only in the hippocampus, exons 1-E and 1-F are also detected in the immune system, and exon 1-H additionally in the liver, lung and smooth muscle. The 5′ region of the hGR is more complex than previously thought, and we suggest that each of these untranslated first exons have a distinct proximal promoter region, providing additional depth to the mechanisms available for tissue-specific expression of the hGR isoforms.
AB - The 5′ untranslated region (UTR) of the glucocorticoid receptor (GR) plays a key role in determining tissue-specific expression and protein isoforms. Analysis of the 5′ UTR of the human GR (hGR) has revealed 11 splice variants of the hGR exon 1, based on seven exon 1s, four of which (1-D to 1-F and 1-H) were previously unknown. All of the exon 1 variants have unique splice donor sites and share a common exon 2 splice acceptor site. Due to an upstream in-frame TGA stop codon the predicted translation from all splice variants is identical. The four new exon 1s show remarkable similarity with their rat homologues. Exon 1-D starts and finishes 17 and 36 bp upstream of the corresponding ends of the rat exon 14. Exon 1-E is only 6 bp longer than its homologue exon 15. Exon 1-F contains two short inserts of 11 and 6 bp when compared with the rat 17. 1-H is 18 bp longer than the corresponding rat 111. In addition to these new exons, we found that the human exon 1-C occurs as three distinct splice variants, covering the region homologous to the rat exons 19 and 110. All of the alternative hGR exons 1s presented here were found to be transcribed in human tissue. The human hippocampus expresses mRNA of all the exon 1 variants, while the expression of the other exon 1s seems to be tissue specific. While exon 1-D is only in the hippocampus, exons 1-E and 1-F are also detected in the immune system, and exon 1-H additionally in the liver, lung and smooth muscle. The 5′ region of the hGR is more complex than previously thought, and we suggest that each of these untranslated first exons have a distinct proximal promoter region, providing additional depth to the mechanisms available for tissue-specific expression of the hGR isoforms.
UR - http://www.scopus.com/inward/record.url?scp=27644447622&partnerID=8YFLogxK
U2 - 10.1677/jme.1.01822
DO - 10.1677/jme.1.01822
M3 - Article
C2 - 16216909
AN - SCOPUS:27644447622
SN - 0952-5041
VL - 35
SP - 283
EP - 292
JO - Journal of Molecular Endocrinology
JF - Journal of Molecular Endocrinology
IS - 2
ER -