Abstract
BACKGROUND: Spine disorders are becoming more prevalent in today's ageing society. Motion abnormalities have been linked to the prevalence and recurrence of these disorders. Various protocols exist to measure thoracolumbar spine motion, but a standard multi-segmental approach is still missing. This study aims to systematically evaluate the literature on stereophotogrammetric motion analysis approaches to quantify thoracolumbar spine kinematics in terms of measurement reliability, suitability of protocols for clinical application and clinical significance of the resulting functional assessment.
METHODS: Electronic databases (PubMed, Scopus and ScienceDirect) were searched until February 2022. Studies published in English, investigating the intersegmental kinematics of the thoracolumbar spine using stereophotogrammetric motion analysis were identified. All information relating to measurement reliability; measurement suitability and clinical significance was extracted from the studies identified.
RESULTS: Seventy-four studies met the inclusion criteria. 33% of the studies reported on the repeatability of their measurement. In terms of suitability, only 35% of protocols were deemed suitable for clinical application. The spinous processes of C7, T3, T6, T12, L1, L3 and L5 were the most widely used landmarks. The spine segment definitions were, however, found to be inconsistent among studies. Activities of daily living were the main tasks performed. Comparable results between protocols are however still missing.
CONCLUSION: The literature to date offers various stereophotogrammetric protocols to quantify the multi-segmental motion of the thoracolumbar spine, without a standard guideline being followed. From a clinical point of view, the approaches are still limited. Further research is needed to define a precise motion analysis protocol in terms of segment definition and clinical relevance.
Original language | English |
---|---|
Pages (from-to) | 1080 |
Journal | BMC Musculoskeletal Disorders |
Volume | 23 |
Issue number | 1 |
DOIs | |
Publication status | Published - 12 Dec 2022 |
Externally published | Yes |
Keywords
- Humans
- Lumbar Vertebrae/diagnostic imaging
- Activities of Daily Living
- Reproducibility of Results
- Biomechanical Phenomena
- Spinal Diseases
- Range of Motion, Articular
- Thoracic Vertebrae/diagnostic imaging