TY - JOUR
T1 - Single-particle cryo-EM at atomic resolution
AU - Nakane, Takanori
AU - Kotecha, Abhay
AU - Sente, Andrija
AU - McMullan, Greg
AU - Masiulis, Simonas
AU - Brown, Patricia M.G.E.
AU - Grigoras, Ioana T.
AU - Malinauskaite, Lina
AU - Malinauskas, Tomas
AU - Miehling, Jonas
AU - Uchański, Tomasz
AU - Yu, Lingbo
AU - Karia, Dimple
AU - Pechnikova, Evgeniya V.
AU - de Jong, Erwin
AU - Keizer, Jeroen
AU - Bischoff, Maarten
AU - McCormack, Jamie
AU - Tiemeijer, Peter
AU - Hardwick, Steven W.
AU - Chirgadze, Dimitri Y.
AU - Murshudov, Garib
AU - Aricescu, A. Radu
AU - Scheres, Sjors H.W.
N1 - Funding Information:
Acknowledgements We thank M. van Beers, M. Veerhoek and R. Jonkers for maintaining the Titan Krios microscopes; W. van Dijk, B. van de Kerkhof, S. Konings and G. van Duinen for advice on optics and microscope alignments; B. van Knippenberg, A. Voigt and F. Grollios for support with EPU software; H. Yanagisawa from the Kikkawa laboratory for the apoferritin sample; P. Miller for the GABAA expression vectors; K. Yamashita for atomic model refinement; A. Koh, T. Darling and J. Grimmett for support with computing; G. Lezcano Singla and E. Franken for support with the EER format; G. van Hoften and G. Hosmar for support with the Falcon-4 camera; and E. Ioannou for logistics support. This work was supported by the EM facilities at the MRC-LMB, the Biochemistry Department of Cambridge University and Thermo Fisher Scientific. The Cryo-EM Facility at Department of Biochemistry is funded by the Wellcome Trust (206171/Z/17/Z; 202905/Z/16/Z) and the University of Cambridge. We acknowledge funding from the UK Medical Research Council (MC_UP_A025_1012 to G. Murshudov, MR/L009609/1 and MC_UP_1201/15 to A.R.A. and MC_UP_A025_1013 to S.H.W.S.); the Japan Society for the Promotion of Science (Overseas Research Fellowship to T.N.); MRC-LMB, Cambridge Trust and School of Clinical Medicine, University of Cambridge (LMB Cambridge Scholarship and Cambridge MB/PhD fellowship to A.S.); the European Commission (Marie Skłodowska-Curie Actions H2020-MSCA-IF-2015/709054 to L.M. and H2020-MSCA-IF-2017/793653 to P.M.G.E.B.); EMBO (long term fellowship 300-2015 to L.M.); Cancer Research UK (T.M., grants C20724/A14414 and C20724/A26752 to C. Siebold, University of Oxford); Boehringer Ingelheim Fonds (PhD Fellowship to J. Miehling; and the Research Foundation – Flanders (FWO, PhD Fellowship to T.U.).
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/11/5
Y1 - 2020/11/5
N2 - The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the β3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.
AB - The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the β3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.
UR - http://www.scopus.com/inward/record.url?scp=85093079338&partnerID=8YFLogxK
U2 - 10.1038/s41586-020-2829-0
DO - 10.1038/s41586-020-2829-0
M3 - Article
C2 - 33087931
AN - SCOPUS:85093079338
SN - 0028-0836
VL - 587
SP - 152
EP - 156
JO - Nature
JF - Nature
IS - 7832
ER -