TY - JOUR
T1 - Separate Effects of Foliar Applied Selenate and Zinc Oxide on the Accumulation of Macrominerals, Macronutrients and Bioactive Compounds in Two Pea (Pisum sativum L.) Seed Varieties
AU - Malka, Maksymilian
AU - Du Laing, Gijs
AU - Bohn, Torsten
N1 - Funding Information:
This study was supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic (grant: VEGA 1/0105/14) and the Luxembourg Institute of Science and Technology.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/8/1
Y1 - 2022/8/1
N2 - Selenium (Se) and zinc (Zn) are important cofactors for antioxidant enzymes. Foliar Se/Zn application is a highly efficient strategy of plant biofortification. However, its effects on the accumulation of macrominerals, macronutrients and bioactive compounds in the pea plant (Pisum sativum L.) have been poorly investigated. A two-year pot experiment was performed to study responses of two pea varieties (Ambassador, Premium) to foliar-applied sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of Ca, Mg, K, Na, soluble solids (SSC), protein, chlorophyll a and b, total chlorophyll, total carotenoids and total condensed tannins (TCT) were determined in seeds. Mg concentration in Ambassador and chlorophyll a concentration in Premium were positively affected, in part, by selenate and zinc oxide, respectively. Selenate and zinc oxide increased, in part, protein concentration in Premium. Highest protein concentration was found in Premium treated with 375 g Zn/ha (27.6% DW) vs. the control (26.6% DW). Significant (all p < 0.001) positive correlations were found, among others, between concentrations of Zn and Mg (r2 = 0.735) and between Zn and protein (r2 = 0.437) for Ambassador, and between Mg and protein (r2 = 0.682), between Zn and Mg (r2 = 0.807), as well as between Zn and protein (r2 = 0.884) for Premium. TCT significantly (all p < 0.05) and positively correlated with SSC (r2 = 0.131), chlorophyll b (r2 = 0.128) and total chlorophyll (r2 = 0.109) for Ambassador. This study provides new nutritional data on Se/Zn biofortified peas, important for improving agronomic biofortification of pea plants.
AB - Selenium (Se) and zinc (Zn) are important cofactors for antioxidant enzymes. Foliar Se/Zn application is a highly efficient strategy of plant biofortification. However, its effects on the accumulation of macrominerals, macronutrients and bioactive compounds in the pea plant (Pisum sativum L.) have been poorly investigated. A two-year pot experiment was performed to study responses of two pea varieties (Ambassador, Premium) to foliar-applied sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of Ca, Mg, K, Na, soluble solids (SSC), protein, chlorophyll a and b, total chlorophyll, total carotenoids and total condensed tannins (TCT) were determined in seeds. Mg concentration in Ambassador and chlorophyll a concentration in Premium were positively affected, in part, by selenate and zinc oxide, respectively. Selenate and zinc oxide increased, in part, protein concentration in Premium. Highest protein concentration was found in Premium treated with 375 g Zn/ha (27.6% DW) vs. the control (26.6% DW). Significant (all p < 0.001) positive correlations were found, among others, between concentrations of Zn and Mg (r2 = 0.735) and between Zn and protein (r2 = 0.437) for Ambassador, and between Mg and protein (r2 = 0.682), between Zn and Mg (r2 = 0.807), as well as between Zn and protein (r2 = 0.884) for Premium. TCT significantly (all p < 0.05) and positively correlated with SSC (r2 = 0.131), chlorophyll b (r2 = 0.128) and total chlorophyll (r2 = 0.109) for Ambassador. This study provides new nutritional data on Se/Zn biofortified peas, important for improving agronomic biofortification of pea plants.
KW - bioactive compounds
KW - foliar application
KW - food security
KW - macrominerals
KW - macronutrients
KW - nutrition
KW - oxidative stress
KW - selenate
KW - zinc oxide
UR - http://www.scopus.com/inward/record.url?scp=85136971036&partnerID=8YFLogxK
UR - https://pubmed.ncbi.nlm.nih.gov/35956488
U2 - 10.3390/plants11152009
DO - 10.3390/plants11152009
M3 - Article
C2 - 35956488
SN - 2223-7747
VL - 11
JO - Plants
JF - Plants
IS - 15
M1 - 2009
ER -