TY - JOUR
T1 - Proteomic response of inflammatory stimulated intestinal epithelial cells to
T2 - In vitro digested plums and cabbages rich in carotenoids and polyphenols
AU - Kaulmann, Anouk
AU - Planchon, Sébastien
AU - Renaut, Jenny
AU - Schneider, Yves Jacques
AU - Hoffmann, Lucien
AU - Bohn, Torsten
N1 - Publisher Copyright:
© 2016 The Royal Society of Chemistry.
PY - 2016/10
Y1 - 2016/10
N2 - Due to their anti-oxidant and anti-inflammatory potential, polyphenol and carotenoid-rich plant foods have been suggested as promising phytochemicals in the prevention of or as adjuvants regarding inflammatory bowel diseases (IBD). In the present study, we investigated whether plum (Italian Plum, Prunus cocomilla), or cabbage (Kale, Brassica oleracea var. sabellica), selected for their high phytochemical content, are able to reduce inflammation in cellular models of the intestinal epithelium, employing proteomic methods. For this purpose, plum/cabbage (carotenoid content: 1.9 mg per 100 g resp. 13 mg per 100 g; polyphenol content: 83 mg per 100 g resp. 27 mg per 100 g) were gastro-intestinally digested, and aliquots exposed (18 h) to either a monoculture (Caco-2) or a triple culture (Caco-2/HT-29-MTX (90:10, v/v) with THP-1 like macrophages), stimulated (with LPS, TNF-α, and IL-1β) to induce inflammation. Cells (Caco-2, Caco-2/HT-29-MTX, and THP-1) were then harvested separately, and proteomic analyses of total cell extracts were carried out by 2D-DIGE. In the monoculture, 68 protein-spots were significantly (p < 0.05, expression ratio >1.5) differentially regulated due to the Kale and Italian plum digesta, and in the co-culture 206 protein-spots, compared to digesta without plum/cabbage. These belonged to 27 (monoculture) and 76 (coculture) uniquely identified proteins, suggesting the coculture to be a more sensitive model. Proteins included antioxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferases. Only 3 proteins were differentially regulated in the THP-1 cells, perhaps as these were only indirectly exposed. The results show promise regarding some aspects related to IBD complications, however, employing phytochemical-rich food items should be further investigated in in vivo trials.
AB - Due to their anti-oxidant and anti-inflammatory potential, polyphenol and carotenoid-rich plant foods have been suggested as promising phytochemicals in the prevention of or as adjuvants regarding inflammatory bowel diseases (IBD). In the present study, we investigated whether plum (Italian Plum, Prunus cocomilla), or cabbage (Kale, Brassica oleracea var. sabellica), selected for their high phytochemical content, are able to reduce inflammation in cellular models of the intestinal epithelium, employing proteomic methods. For this purpose, plum/cabbage (carotenoid content: 1.9 mg per 100 g resp. 13 mg per 100 g; polyphenol content: 83 mg per 100 g resp. 27 mg per 100 g) were gastro-intestinally digested, and aliquots exposed (18 h) to either a monoculture (Caco-2) or a triple culture (Caco-2/HT-29-MTX (90:10, v/v) with THP-1 like macrophages), stimulated (with LPS, TNF-α, and IL-1β) to induce inflammation. Cells (Caco-2, Caco-2/HT-29-MTX, and THP-1) were then harvested separately, and proteomic analyses of total cell extracts were carried out by 2D-DIGE. In the monoculture, 68 protein-spots were significantly (p < 0.05, expression ratio >1.5) differentially regulated due to the Kale and Italian plum digesta, and in the co-culture 206 protein-spots, compared to digesta without plum/cabbage. These belonged to 27 (monoculture) and 76 (coculture) uniquely identified proteins, suggesting the coculture to be a more sensitive model. Proteins included antioxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferases. Only 3 proteins were differentially regulated in the THP-1 cells, perhaps as these were only indirectly exposed. The results show promise regarding some aspects related to IBD complications, however, employing phytochemical-rich food items should be further investigated in in vivo trials.
UR - http://www.scopus.com/inward/record.url?scp=84991457518&partnerID=8YFLogxK
U2 - 10.1039/c6fo00674d
DO - 10.1039/c6fo00674d
M3 - Article
C2 - 27711906
AN - SCOPUS:84991457518
SN - 2042-6496
VL - 7
SP - 4388
EP - 4399
JO - Food and Function
JF - Food and Function
IS - 10
ER -