Abstract
Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤. 0.05, fold change ≥. 2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences.
Original language | English |
---|---|
Pages (from-to) | 325-336 |
Number of pages | 12 |
Journal | Journal of Proteomics |
Volume | 108 |
DOIs | |
Publication status | Published - 28 Aug 2014 |
Keywords
- Interferon beta
- Interstrain differences
- Measles virus
- Proteomics
- Virus-host interaction