Original language | English |
---|---|
Article number | e70042 |
Journal | Clinical and Translational Medicine |
Volume | 14 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2024 |
Keywords
- COVID-19/diagnosis
- Machine Learning
- Humans
- Severity of Illness Index
- SARS-CoV-2
- Male
- Female
- Middle Aged
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Clinical and Translational Medicine, Vol. 14, No. 10, e70042, 10.2024.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Prediction of COVID-19 severity using machine learning
AU - Karaduzovic-Hadziabdic, Kanita
AU - Adilovic, Muhamed
AU - Zhang, Lu
AU - Lumley, Andrew I
AU - Shah, Pranay
AU - Shoaib, Muhammad
AU - Satagopam, Venkata
AU - Srivastava, Prashant Kumar
AU - Emanueli, Costanza
AU - Greco, Simona
AU - Madè, Alisia
AU - Padro, Teresa
AU - Domingo, Pedro
AU - Lustrek, Mitja
AU - Scholz, Markus
AU - Rosolowski, Maciej
AU - Jordan, Marko
AU - Benczik, Bettina
AU - Ágg, Bence
AU - Ferdinandy, Péter
AU - Baker, Andrew H
AU - Fagherazzi, Guy
AU - Ollert, Markus
AU - Michel, Joanna
AU - Sanchez, Gabriel
AU - Firat, Hüseyin
AU - Brandenburger, Timo
AU - Martelli, Fabio
AU - Badimon, Lina
AU - Devaux, Yvan
AU - COVIRNA consortium (www.covirna.eu)
N1 - This work was supported by the EU Horizon 2020 project COVIRNA awarded to YD (grant agreement # 101016072). The Predi-COVID study was supported by the Luxembourg National Research Fund (FNR) (Predi-COVID, grant number 14716273), the André Losch Foundation and by European Regional Development Fund (FEDER, convention 2018-04-026-21). YD is funded by the EU Horizon 2020 project COVIRNA (grant agreement # 101016072), the National Research Fund (grants # C14/BM/8225223, C17/BM/11613033 and COVID-19/2020-1/14719577/miRCOVID), the Ministry of Higher Education and Research, and the Heart Foundation-Daniel Wagner of Luxembourg. FM is supported by the Italian Ministry of Health (Ricerca Corrente 2024 1.07.128, RF-2019-12368521 and POS T4 CAL.HUB.RIA cod. T4-AN-09), EU COVIRNA agree- ment #101016072, Next Generation EU PNRR M6C2 Inv. 2.1 PNRR-MAD-2022-12375790 and PNRR/2022/C9/MCID/I8 FibroThera. Horizon 2020 Framework Programme 101016072, André Losch Fondation, Heart Foundation-Daniel Wagner of Luxembourg, Ministero della Salute POS T4 CAL.HUB.RIA cod. T4-AN-09, RF-2019-12368521, Ricerca Corrente 2024 1.07.128, Fonds National de la Recherche Luxembourg C14/BM/8225223, C17/BM/11613033, COVID- 19/2020-1/14719577/miRCOVID, Next Generation EU, European Regional Development Fund FEDER, convention 2018-04-026-21, Ministère de l’Education Nationale, de l’Enseignement Superieur et de la Recherche. P.F. and B.Á. were funded by project no. RRF-2.3.1-21-2022-00003 that has been implemented with the support provided by the European Union. The 2020-1.1.5-GYORSÍTÓSÁV-202100011 project was funded by the Ministry for Innovation and Technology with support from the National Research Development and Innovation Fund under the 2020-1.1.5-GYORSÍTÓSÁV call programme. This study was funded by the grant 2020-1.1.6-JÖVŐ-2021-00013 ( “Befektetés a jÖvŐbe” NKFIH). This project has received funding from the HUN-REN Hungarian Research Network
PY - 2024/10
Y1 - 2024/10
KW - COVID-19/diagnosis
KW - Machine Learning
KW - Humans
KW - Severity of Illness Index
KW - SARS-CoV-2
KW - Male
KW - Female
KW - Middle Aged
UR - https://pubmed.ncbi.nlm.nih.gov/39370709/
U2 - 10.1002/ctm2.70042
DO - 10.1002/ctm2.70042
M3 - Article
C2 - 39370709
SN - 2001-1326
VL - 14
JO - Clinical and Translational Medicine
JF - Clinical and Translational Medicine
IS - 10
M1 - e70042
ER -