Abstract
Background: Parkinson’s disease (PD) is a systemic disease clinically defined by the degeneration of dopaminergic neurons in the brain. While alterations in the gut microbiome composition have been reported in PD, their functional consequences remain unclear. Herein, we addressed this question by an analysis of stool samples from the Luxembourg Parkinson’s Study (n = 147 typical PD cases, n = 162 controls). Results: All individuals underwent detailed clinical assessment, including neurological examinations and neuropsychological tests followed by self-reporting questionnaires. Stool samples from these individuals were first analysed by 16S rRNA gene sequencing. Second, we predicted the potential secretion for 129 microbial metabolites through personalised metabolic modelling using the microbiome data and genome-scale metabolic reconstructions of human gut microbes. Our key results include the following. Eight genera and seven species changed significantly in their relative abundances between PD patients and healthy controls. PD-associated microbial patterns statistically depended on sex, age, BMI, and constipation. Particularly, the relative abundances of Bilophila and Paraprevotella were significantly associated with the Hoehn and Yahr staging after controlling for the disease duration. Furthermore, personalised metabolic modelling of the gut microbiomes revealed PD-associated metabolic patterns in the predicted secretion potential of nine microbial metabolites in PD, including increased methionine and cysteinylglycine. The predicted microbial pantothenic acid production potential was linked to the presence of specific non-motor symptoms. Conclusion: Our results suggest that PD-associated alterations of the gut microbiome can translate into substantial functional differences affecting host metabolism and disease phenotype.
Original language | English |
---|---|
Article number | 62 |
Journal | BMC Biology |
Volume | 18 |
Issue number | 1 |
DOIs | |
Publication status | Published - 9 Jun 2020 |
Keywords
- Computational modelling
- Gut microbiome
- Metabolic modelling
- Parkinson’s disease
- Transsulfuration pathway