Oxidative metabolism of bupivacaine into pipecolylxylidine in humans is mainly catalyzed by CYP3A

Manon Gantenbein, Laurence Attolini, Bernard Bruguerolle*, Pierre Henri Villard, Franck Puyoou, Alain Durand, Bruno Lacarelle, Jean Hardwigsen, Yves Patrice Le-Treut

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

56 Citations (Scopus)


Bupivacaine is used to provide prolonged anesthesia and postoperative analgesia. The human cytochrome P450 (CYP) involved in bupivacaine degradation into pipecolylxylidine (PPX), its major metabolite, has, to our knowledge, never been described. Microsome samples were prepared from six human livers and incubated in the presence of bupivacaine. The concentrations of PPX in the microsomal suspensions were assessed, and K(m) and V(max) values were calculated. Bupivacaine incubations were then performed with specific CYP substrates and inhibitors. For each sample of hepatic microsomes, the correlation between the rate of PPX formation and the corresponding erythromycin N-demethylase activity was analyzed. Finally, an immunoinhibition study using an anti-rabbit CYP3A6 antibody and assays with cDNA-expressed human CYP were conducted. The apparent K(m) and V(max) values of bupivacaine were, respectively, 125 μM and 4.78 nmol/min/mg of microsomal protein. The strongest inhibition of bupivacaine metabolism was obtained for troleandomycin (-95% at 50 μM), a specific CYP3A inhibitor. The correlation between PPX formation and erythromycin N-demethylase activity showed an R value of 0.99 whereas antirabbit CYP3A6 antibody inhibited the degradation of bupivacaine into PPX by 99%. Finally, CYP1A2 and CYP2E1 cDNA-expressed forms of human CYP did not allow PPX formation, CYP2C19 and CYP2D6 produced only small amounts whereas CYP3A4 most efficiently metabolized bupivacaine into PPX. These results demonstrated that bupivacaine degradation into PPX was mediated in humans by CYP3A.

Original languageEnglish
Pages (from-to)383-385
Number of pages3
JournalDrug Metabolism and Disposition
Issue number4
Publication statusPublished - 2000
Externally publishedYes


Dive into the research topics of 'Oxidative metabolism of bupivacaine into pipecolylxylidine in humans is mainly catalyzed by CYP3A'. Together they form a unique fingerprint.

Cite this