TY - JOUR
T1 - Multimeric immunotherapeutic complexes activating natural killer cells towards HIV-1 cure
AU - Schober, Rafaëla
AU - Brandus, Bianca
AU - Laeremans, Thessa
AU - Iserentant, Gilles
AU - Rolin, Camille
AU - Dessilly, Géraldine
AU - Zimmer, Jacques
AU - Moutschen, Michel
AU - Aerts, Joeri L.
AU - Dervillez, Xavier
AU - Seguin-Devaux, Carole
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/11/7
Y1 - 2023/11/7
N2 - Background: Combination antiretroviral therapy (cART) has dramatically extended the life expectancy of people living with HIV-1 and improved their quality of life. There is nevertheless no cure for HIV-1 infection since HIV-1 persists in viral reservoirs of latently infected CD4+ T cells. cART does not eradicate HIV-1 reservoirs or restore cytotoxic natural killer (NK) cells which are dramatically reduced by HIV-1 infection, and express the checkpoint inhibitors NKG2A or KIR2DL upregulated after HIV-1 infection. Cytotoxic NK cells expressing the homing receptor CXCR5 were recently described as key subsets controlling viral replication. Methods: We designed and evaluated the potency of “Natural killer activating Multimeric immunotherapeutic compleXes”, called as NaMiX, combining multimers of the IL-15/IL-15Rα complex with an anti-NKG2A or an anti-KIR single-chain fragment variable (scFv) to kill HIV-1 infected CD4+ T cells. The oligomerization domain of the C4 binding protein was used to associate the IL-15/IL-15Rα complex to the scFv of each checkpoint inhibitor as well as to multimerize each entity into a heptamer (α form) or a dimer (β form). Each α or β form was compared in different in vitro models using one-way ANOVA and post-hoc Tukey’s tests before evaluation in humanized NSG tg-huIL-15 mice having functional NK cells. Results: All NaMiX significantly enhanced the cytolytic activity of NK and CD8+ T cells against Raji tumour cells and HIV-1+ ACH-2 cells by increasing degranulation, release of granzyme B, perforin and IFN-γ. Targeting NKG2A had a stronger effect than targeting KIR2DL due to higher expression of NKG2A on NK cells. In viral inhibition assays, NaMiX initially increased viral replication of CD4+ T cells which was subsequently inhibited by cytotoxic NK cells. Importantly, anti-NKG2A NaMiX enhanced activation, cytotoxicity, IFN-γ production and CXCR5 expression of NK cells from HIV-1 positive individuals. In humanized NSG tg-huIL-15 mice, we confirmed enhanced activation, degranulation, cytotoxicity of NK cells, and killing of HIV-1 infected cells from mice injected with the anti-NKG2A.α NaMiX, as compared to control mice, as well as decreased total HIV-1 DNA in the lung. Conclusions: NK cell-mediated killing of HIV-1 infected cells by NaMiX represents a promising approach to support HIV-1 cure strategies.
AB - Background: Combination antiretroviral therapy (cART) has dramatically extended the life expectancy of people living with HIV-1 and improved their quality of life. There is nevertheless no cure for HIV-1 infection since HIV-1 persists in viral reservoirs of latently infected CD4+ T cells. cART does not eradicate HIV-1 reservoirs or restore cytotoxic natural killer (NK) cells which are dramatically reduced by HIV-1 infection, and express the checkpoint inhibitors NKG2A or KIR2DL upregulated after HIV-1 infection. Cytotoxic NK cells expressing the homing receptor CXCR5 were recently described as key subsets controlling viral replication. Methods: We designed and evaluated the potency of “Natural killer activating Multimeric immunotherapeutic compleXes”, called as NaMiX, combining multimers of the IL-15/IL-15Rα complex with an anti-NKG2A or an anti-KIR single-chain fragment variable (scFv) to kill HIV-1 infected CD4+ T cells. The oligomerization domain of the C4 binding protein was used to associate the IL-15/IL-15Rα complex to the scFv of each checkpoint inhibitor as well as to multimerize each entity into a heptamer (α form) or a dimer (β form). Each α or β form was compared in different in vitro models using one-way ANOVA and post-hoc Tukey’s tests before evaluation in humanized NSG tg-huIL-15 mice having functional NK cells. Results: All NaMiX significantly enhanced the cytolytic activity of NK and CD8+ T cells against Raji tumour cells and HIV-1+ ACH-2 cells by increasing degranulation, release of granzyme B, perforin and IFN-γ. Targeting NKG2A had a stronger effect than targeting KIR2DL due to higher expression of NKG2A on NK cells. In viral inhibition assays, NaMiX initially increased viral replication of CD4+ T cells which was subsequently inhibited by cytotoxic NK cells. Importantly, anti-NKG2A NaMiX enhanced activation, cytotoxicity, IFN-γ production and CXCR5 expression of NK cells from HIV-1 positive individuals. In humanized NSG tg-huIL-15 mice, we confirmed enhanced activation, degranulation, cytotoxicity of NK cells, and killing of HIV-1 infected cells from mice injected with the anti-NKG2A.α NaMiX, as compared to control mice, as well as decreased total HIV-1 DNA in the lung. Conclusions: NK cell-mediated killing of HIV-1 infected cells by NaMiX represents a promising approach to support HIV-1 cure strategies.
KW - HIV cure
KW - IL-15
KW - Immunotherapy
KW - KIR2DL
KW - NK cells
KW - NKG2A
UR - http://www.scopus.com/inward/record.url?scp=85176003079&partnerID=8YFLogxK
UR - https://pubmed.ncbi.nlm.nih.gov/37936122
U2 - 10.1186/s12967-023-04669-4
DO - 10.1186/s12967-023-04669-4
M3 - Article
C2 - 37936122
AN - SCOPUS:85176003079
SN - 1479-5876
VL - 21
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
IS - 1
M1 - 791
ER -