Abstract
Objectives This study was designed to evaluate multimodal prognostication in patients after cardiac arrest (CA). Background Accurate methods to predict outcome after CA are lacking. Methods Seventy-five patients with CA treated with therapeutic hypothermia after cardiac resuscitation were enrolled in this prospective observational study. Serum levels of neuron-specific enolase (NSE) and neuron-enriched S100 beta (S100β) were measured 48 h after CA. Bispectral index (BIS) was continuously monitored during the first 48 h after CA. The primary endpoint was neurological outcome, as defined by the cerebral performance category (CPC) at 6-month follow-up: scores 1 or 2 indicated good outcome, and scores 3 to 5, poor outcome. The secondary endpoint was survival. Results A total of 46 (61%) patients survived at 6 months and 41 (55%) patients had CPC 1 or 2. Levels of NSE and S100β were higher in patients with poor outcomes compared with patients with good outcomes (4-fold and 10-fold, respectively; p < 0.001). BIS was lower in patients with poor outcomes (10-fold; p < 0.001). NSE, S100β, or BIS alone predicted neurological outcome, with areas under the receiver-operating characteristic curve (AUC) above 0.80. Combined determination of S100β and BIS had an incremental predictive value (AUC: 0.95). S100β improved discriminations based on BIS (p = 0.0008), and BIS improved discriminations based on S100β (p < 10-5). Patients with S100β level above 0.03 μg/l and BIS below 5.5 had a 3.6-fold higher risk of poor neurological outcome (p < 0.0001). S100β and BIS predicted 6-month mortality (log-rank statistic: 50.41; p < 0.001). Conclusions Combined determination of serum level of S100β and BIS monitoring accurately predicts outcome after CA.
Original language | English |
---|---|
Pages (from-to) | 851-858 |
Number of pages | 8 |
Journal | Journal of the American College of Cardiology |
Volume | 62 |
Issue number | 9 |
DOIs | |
Publication status | Published - 27 Aug 2013 |
Keywords
- biomarkers
- brain injury
- cardiac arrest
- electroencephalogram
- prognosis
- survival