Abstract
Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity,mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1mutant cells.While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrialtargeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDHmutant inhibitors.
Original language | English |
---|---|
Article number | e20200924 |
Journal | Journal of Experimental Medicine |
Volume | 218 |
Issue number | 5 |
DOIs | |
Publication status | Published - 3 May 2021 |