TY - JOUR
T1 - Machine learning for predicting neurodegenerative diseases in the general older population
T2 - a cohort study
AU - Aguayo, Gloria A.
AU - Zhang, Lu
AU - Vaillant, Michel
AU - Ngari, Moses
AU - Perquin, Magali
AU - Moran, Valerie
AU - Huiart, Laetitia
AU - Krüger, Rejko
AU - Azuaje, Francisco
AU - Ferdynus, Cyril
AU - Fagherazzi, Guy
N1 - Funding
This work was supported by the National Centre of Excellence in Research on Parkinson’s Disease (NCER-PD), funded by the Luxembourg National Research Fund (FNR/NCER13/BM/11264123). The data creators or the funders of the data collection and the UK Data Archive do not bear any responsibility for the analyses or interpretations presented here. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
© 2023. The Author(s).
PY - 2023/1/11
Y1 - 2023/1/11
N2 - BACKGROUND: In the older general population, neurodegenerative diseases (NDs) are associated with increased disability, decreased physical and cognitive function. Detecting risk factors can help implement prevention measures. Using deep neural networks (DNNs), a machine-learning algorithm could be an alternative to Cox regression in tabular datasets with many predictive features. We aimed to compare the performance of different types of DNNs with regularized Cox proportional hazards models to predict NDs in the older general population. METHODS: We performed a longitudinal analysis with participants of the English Longitudinal Study of Ageing. We included men and women with no NDs at baseline, aged 60 years and older, assessed every 2 years from 2004 to 2005 (wave2) to 2016-2017 (wave 8). The features were a set of 91 epidemiological and clinical baseline variables. The outcome was new events of Parkinson's, Alzheimer or dementia. After applying multiple imputations, we trained three DNN algorithms: Feedforward, TabTransformer, and Dense Convolutional (Densenet). In addition, we trained two algorithms based on Cox models: Elastic Net regularization (CoxEn) and selected features (CoxSf). RESULTS: 5433 participants were included in wave 2. During follow-up, 12.7% participants developed NDs. Although the five models predicted NDs events, the discriminative ability was superior using TabTransformer (Uno's C-statistic (coefficient (95% confidence intervals)) 0.757 (0.702, 0.805). TabTransformer showed superior time-dependent balanced accuracy (0.834 (0.779, 0.889)) and specificity (0.855 (0.0.773, 0.909)) than the other models. With the CoxSf (hazard ratio (95% confidence intervals)), age (10.0 (6.9, 14.7)), poor hearing (1.3 (1.1, 1.5)) and weight loss 1.3 (1.1, 1.6)) were associated with a higher DNN risk. In contrast, executive function (0.3 (0.2, 0.6)), memory (0, 0, 0.1)), increased gait speed (0.2, (0.1, 0.4)), vigorous physical activity (0.7, 0.6, 0.9)) and higher BMI (0.4 (0.2, 0.8)) were associated with a lower DNN risk. CONCLUSION: TabTransformer is promising for prediction of NDs with heterogeneous tabular datasets with numerous features. Moreover, it can handle censored data. However, Cox models perform well and are easier to interpret than DNNs. Therefore, they are still a good choice for NDs.
AB - BACKGROUND: In the older general population, neurodegenerative diseases (NDs) are associated with increased disability, decreased physical and cognitive function. Detecting risk factors can help implement prevention measures. Using deep neural networks (DNNs), a machine-learning algorithm could be an alternative to Cox regression in tabular datasets with many predictive features. We aimed to compare the performance of different types of DNNs with regularized Cox proportional hazards models to predict NDs in the older general population. METHODS: We performed a longitudinal analysis with participants of the English Longitudinal Study of Ageing. We included men and women with no NDs at baseline, aged 60 years and older, assessed every 2 years from 2004 to 2005 (wave2) to 2016-2017 (wave 8). The features were a set of 91 epidemiological and clinical baseline variables. The outcome was new events of Parkinson's, Alzheimer or dementia. After applying multiple imputations, we trained three DNN algorithms: Feedforward, TabTransformer, and Dense Convolutional (Densenet). In addition, we trained two algorithms based on Cox models: Elastic Net regularization (CoxEn) and selected features (CoxSf). RESULTS: 5433 participants were included in wave 2. During follow-up, 12.7% participants developed NDs. Although the five models predicted NDs events, the discriminative ability was superior using TabTransformer (Uno's C-statistic (coefficient (95% confidence intervals)) 0.757 (0.702, 0.805). TabTransformer showed superior time-dependent balanced accuracy (0.834 (0.779, 0.889)) and specificity (0.855 (0.0.773, 0.909)) than the other models. With the CoxSf (hazard ratio (95% confidence intervals)), age (10.0 (6.9, 14.7)), poor hearing (1.3 (1.1, 1.5)) and weight loss 1.3 (1.1, 1.6)) were associated with a higher DNN risk. In contrast, executive function (0.3 (0.2, 0.6)), memory (0, 0, 0.1)), increased gait speed (0.2, (0.1, 0.4)), vigorous physical activity (0.7, 0.6, 0.9)) and higher BMI (0.4 (0.2, 0.8)) were associated with a lower DNN risk. CONCLUSION: TabTransformer is promising for prediction of NDs with heterogeneous tabular datasets with numerous features. Moreover, it can handle censored data. However, Cox models perform well and are easier to interpret than DNNs. Therefore, they are still a good choice for NDs.
KW - Alzheimer
KW - Cox models
KW - Deep neural networks
KW - Dementia
KW - Older general population
KW - Parkinson disease
KW - Prediction
KW - Tabular data
UR - http://www.scopus.com/inward/record.url?scp=85146140922&partnerID=8YFLogxK
UR - https://pubmed.ncbi.nlm.nih.gov/36631766
U2 - 10.1186/s12874-023-01837-4
DO - 10.1186/s12874-023-01837-4
M3 - Article
C2 - 36631766
SN - 1471-2288
VL - 23
SP - 8
JO - BMC Medical Research Methodology
JF - BMC Medical Research Methodology
IS - 1
M1 - 8
ER -