TY - JOUR
T1 - Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress
AU - Mori, Simone
AU - Sugama, Shuei
AU - Nguyen, William
AU - Michel, Tatiana
AU - Sanna, M. Germana
AU - Sanchez-Alavez, Manuel
AU - Cintron-Colon, Rigo
AU - Moroncini, Gianluca
AU - Kakinuma, Yoshihiko
AU - Maher, Pamela
AU - Conti, Bruno
N1 - Funding Information:
Funding Supported by the NIH (NS085155), The Michael J. Fox Foundation, the College of Physician and Surgeons of Ancona, Italy and The Luxembourg National Research Fund INTER/MOBILITY/2015/10533315/IMMUNPARK.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/4/21
Y1 - 2017/4/21
N2 - Background: The majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Methods: Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1 Y/ - ) and their wild-type littermates (Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. Results: IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y/- mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y/- mice. Conclusions: IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.
AB - Background: The majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Methods: Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1 Y/ - ) and their wild-type littermates (Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. Results: IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y/- mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y/- mice. Conclusions: IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.
KW - Interleukin
KW - Microglia
KW - Neuroinflammation
KW - Oxidative stress
KW - Parkinson's disease
KW - Stress
UR - http://www.scopus.com/inward/record.url?scp=85018483297&partnerID=8YFLogxK
U2 - 10.1186/s12974-017-0862-1
DO - 10.1186/s12974-017-0862-1
M3 - Article
C2 - 28427412
AN - SCOPUS:85018483297
SN - 1742-2094
VL - 14
JO - Journal of Neuroinflammation
JF - Journal of Neuroinflammation
IS - 1
M1 - 88
ER -