Junctional Adhesion Molecule (JAM)-C Deficient C57BL/6 Mice Develop a Severe Hydrocephalus

Lena Wyss, Julia Schäfer, Stefan Liebner, Michel Mittelbronn, Urban Deutsch, Gaby Enzmann, Ralf H. Adams, Michel Aurrand-Lions, Karl H. Plate, Beat A. Imhof, Britta Engelhardt*

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

30 Citations (Scopus)

Abstract

The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C-/- mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C-/- mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C-/- C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C-/- mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C-/- C57BL/6 mice. Taken together, our study suggests that JAM-C-/- C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

Original languageEnglish
Article numbere45619
JournalPLoS ONE
Volume7
Issue number9
DOIs
Publication statusPublished - 18 Sept 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Junctional Adhesion Molecule (JAM)-C Deficient C57BL/6 Mice Develop a Severe Hydrocephalus'. Together they form a unique fingerprint.

Cite this