TY - JOUR
T1 - Jagged1 regulates the activation of astrocytes via modulation of NFκB and JAK/STAT/SOCS pathways
AU - Morga, Eleonora
AU - Mouad-Amazzal, Laila
AU - Felten, Paul
AU - Heurtaux, Tony
AU - Moro, Mike
AU - Michelucci, Alessandro
AU - Gabel, Sebastien
AU - Grandbarbe, Luc
AU - Heuschling, Paul
PY - 2009
Y1 - 2009
N2 - The Notch pathway is implicated in many aspects of the central nervous system (CNS) development and functions. Recently, we and others identified the Notch pathway to be involved in inflammatory events of the CNS. To understand the implication of this pathway on astrocytes, we have studied the Jagged-Notch-Hes pathway under inflammatory conditions. LPS exposure induced an upregulation of Jagged1 expression on cultured astrocytes. To address the role of Jagged1 in the modulation of inflammation, we used a siRNA mediated silencing of Jagged1 (siRNA J1). Jagged1 inhibition induced important variations on the Notch pathway components like Hes1, Hes5, Notch3, and RBP-Jκ. siRNA J1 repressed the mRNA expression of genes known as hallmarks of the gliosis like GFAP and endothelin(B) receptor. On activated astrocytes, the inhibition of Jagged1 had antiinflammatory effects and resulted in a decrease of LPS-induced proinflammatory cytokines (IL1β, IL1α, and TNFα) as well as the iNOS expression. The inhibition of Jagged1 induced a modulation of the JAK/STAT/SOCS signaling pathway. Most interestingly, the siRNA J1 decreased the LPS-induced translocation of NFκB p65 and this could be correlated to the phosphorylation of IκBα. These results suggest that during inflammatory and gliotic events of the CNS, Jagged1/Notch signaling sustains the inflammation mainly through NFκB and in part through JAK/STAT/SOCS signaling pathways.
AB - The Notch pathway is implicated in many aspects of the central nervous system (CNS) development and functions. Recently, we and others identified the Notch pathway to be involved in inflammatory events of the CNS. To understand the implication of this pathway on astrocytes, we have studied the Jagged-Notch-Hes pathway under inflammatory conditions. LPS exposure induced an upregulation of Jagged1 expression on cultured astrocytes. To address the role of Jagged1 in the modulation of inflammation, we used a siRNA mediated silencing of Jagged1 (siRNA J1). Jagged1 inhibition induced important variations on the Notch pathway components like Hes1, Hes5, Notch3, and RBP-Jκ. siRNA J1 repressed the mRNA expression of genes known as hallmarks of the gliosis like GFAP and endothelin(B) receptor. On activated astrocytes, the inhibition of Jagged1 had antiinflammatory effects and resulted in a decrease of LPS-induced proinflammatory cytokines (IL1β, IL1α, and TNFα) as well as the iNOS expression. The inhibition of Jagged1 induced a modulation of the JAK/STAT/SOCS signaling pathway. Most interestingly, the siRNA J1 decreased the LPS-induced translocation of NFκB p65 and this could be correlated to the phosphorylation of IκBα. These results suggest that during inflammatory and gliotic events of the CNS, Jagged1/Notch signaling sustains the inflammation mainly through NFκB and in part through JAK/STAT/SOCS signaling pathways.
KW - Gliosis
KW - Hes1
KW - Inflammation
KW - Notch
UR - http://www.scopus.com/inward/record.url?scp=71249105739&partnerID=8YFLogxK
U2 - 10.1002/glia.20887
DO - 10.1002/glia.20887
M3 - Article
C2 - 19455581
AN - SCOPUS:71249105739
SN - 0894-1491
VL - 57
SP - 1741
EP - 1753
JO - GLIA
JF - GLIA
IS - 16
ER -