TY - JOUR
T1 - Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson’s disease
AU - Zelimkhanov, Gelani
AU - Vega, Carlos
AU - Vaillant, Michel
AU - Trouet, Johanna
AU - Thien, Hermann
AU - Theresine, Maud
AU - Sokolowska, Kate
AU - Sharify, Amir
AU - Sapienza, Stefano
AU - Roland, Olivia
AU - Richard, Ilsé
AU - Remark, Lucie
AU - Rauschenberger, Armin
AU - Pexaras, Achilleas
AU - Perquin, Magali
AU - Pavelka, Lukas
AU - Pauly, Laure
AU - Pauly, Claire
AU - Noor, Fozia
AU - Nickels, Sarah
AU - Nehrbass, Ulf
AU - Munsch, Maeva
AU - Mtimet, Saïda
AU - Mittelbronn, Michel
AU - Menster, Myriam
AU - Mendibide, Alexia
AU - Mediouni, Chouaib
AU - Mcintyre, Deborah
AU - Marques, Guilherme
AU - Marques, Tainá M.
AU - Lorentz, Victoria
AU - Lopes, Ana Festas
AU - Landoulsi, Zied
AU - Lambert, Pauline
AU - Krüger, Rejko
AU - Kofanova, Olga
AU - Klucken, Jochen
AU - Jónsdóttir, Sonja
AU - Hundt, Alexander
AU - Henry, Margaux
AU - Henry, Estelle
AU - Hanff, Anne Marie
AU - Graas, Jérôme
AU - Giraitis, Marijus
AU - Georges, Laura
AU - Gantenbein, Manon
AU - Gamio, Carlos
AU - Fritz, Joëlle
AU - Ferrari, Angelo
AU - De Bremaeker, Nancy
AU - Contesotto, Gessica
AU - Boussaad, Ibrahim
AU - Berchem, Guy
AU - Béchet, Sibylle
AU - Beaumont, Katy
AU - Batutu, Roxane
AU - Ammerlaan, Wim
AU - Alexandre, Myriam
AU - Aguayo, Gloria
AU - Acharya, Geeta
AU - on behalf of the NCER-PD Consortium
AU - Glaab, Enrico
N1 - Grants and funding
INTER/ERAPerMed/20/14599012/DIGIPD/Fonds National de la Recherche Luxembourg (National Research Fund)
INTER/22/17104370/RECAST/Fonds National de la Recherche Luxembourg (National Research Fund)
INTER/EJPRD22l1/7027921/PreDYT/Fonds National de la Recherche Luxembourg (National Research Fund)
FNR/NCER13/BM/11264123/Fonds National de la Recherche Luxembourg (National Research Fund)
INTER/ERAPerMed/20/14599012/DIGIPD/Fonds National de la Recherche Luxembourg (National Research Fund)
Publisher Copyright:
© The Author(s) 2024.
PY - 2024/9/6
Y1 - 2024/9/6
N2 - Parkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.
AB - Parkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.
UR - http://www.scopus.com/inward/record.url?scp=85203273723&partnerID=8YFLogxK
UR - https://pubmed.ncbi.nlm.nih.gov/39242660/
U2 - 10.1038/s41746-024-01236-z
DO - 10.1038/s41746-024-01236-z
M3 - Article
C2 - 39242660
AN - SCOPUS:85203273723
SN - 2398-6352
VL - 7
SP - 235
JO - npj Digital Medicine
JF - npj Digital Medicine
IS - 1
M1 - 235
ER -