TY - JOUR
T1 - Instrumented gait analysis
T2 - A measure of gait improvement by a wheeled walker in hospitalized geriatric patients
AU - Schülein, Samuel
AU - Barth, Jens
AU - Rampp, Alexander
AU - Rupprecht, Roland
AU - Eskofier, Björn M.
AU - Winkler, Jürgen
AU - Gaßmann, Karl Günter
AU - Klucken, Jochen
N1 - Funding Information:
The study has been funded by an intramural grant (EFI-Moves) from the Friedrich-Alexander University Erlangen-Nürnberg, Germany, and by the Bavarian Research Foundation (eGaIT), Germany.
Funding Information:
We would like to thank all participants in this study. The authors thank the Kongregation der St. Franziskusschwestern Vierzehnheiligen and the hospital management of the Waldkrankenhaus St. Marien for supporting this research. The project was partially funded by the BFS (Bavarian Research Foundation, Bavaria, Germany) and the EFI (Emerging Fields Initiative, Friedrich-Alexander University Erlangen-Nürnberg). The present work was performed in fulfillment of the requirements of the Friedrich-Alexander University of Erlangen-Nürnberg for obtaining the degree “Dr. rer. biol. hum”.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/2/27
Y1 - 2017/2/27
N2 - Background: In an increasing aging society, reduced mobility is one of the most important factors limiting activities of daily living and overall quality of life. The ability to walk independently contributes to the mobility, but is increasingly restricted by numerous diseases that impair gait and balance. The aim of this cross-sectional observation study was to examine whether spatio-temporal gait parameters derived from mobile instrumented gait analysis can be used to measure the gait stabilizing effects of a wheeled walker (WW) and whether these gait parameters may serve as surrogate marker in hospitalized patients with multifactorial gait and balance impairment. Methods: One hundred six patients (ages 68-95) wearing inertial sensor equipped shoes passed an instrumented walkway with and without gait support from a WW. The walkway assessed the risk of falling associated gait parameters velocity, swing time, stride length, stride time- and double support time variability. Inertial sensor-equipped shoes measured heel strike and toe off angles, and foot clearance. Results: The use of a WW improved the risk of spatio-temporal parameters velocity, swing time, stride length and the sagittal plane associated parameters heel strike and toe off angles in all patients. First-time users (FTUs) showed similar gait parameter improvement patterns as frequent WW users (FUs). However, FUs with higher levels of gait impairment improved more in velocity, stride length and toe off angle compared to the FTUs. Conclusion: The impact of a WW can be quantified objectively by instrumented gait assessment. Thus, objective gait parameters may serve as surrogate markers for the use of walking aids in patients with gait and balance impairments.
AB - Background: In an increasing aging society, reduced mobility is one of the most important factors limiting activities of daily living and overall quality of life. The ability to walk independently contributes to the mobility, but is increasingly restricted by numerous diseases that impair gait and balance. The aim of this cross-sectional observation study was to examine whether spatio-temporal gait parameters derived from mobile instrumented gait analysis can be used to measure the gait stabilizing effects of a wheeled walker (WW) and whether these gait parameters may serve as surrogate marker in hospitalized patients with multifactorial gait and balance impairment. Methods: One hundred six patients (ages 68-95) wearing inertial sensor equipped shoes passed an instrumented walkway with and without gait support from a WW. The walkway assessed the risk of falling associated gait parameters velocity, swing time, stride length, stride time- and double support time variability. Inertial sensor-equipped shoes measured heel strike and toe off angles, and foot clearance. Results: The use of a WW improved the risk of spatio-temporal parameters velocity, swing time, stride length and the sagittal plane associated parameters heel strike and toe off angles in all patients. First-time users (FTUs) showed similar gait parameter improvement patterns as frequent WW users (FUs). However, FUs with higher levels of gait impairment improved more in velocity, stride length and toe off angle compared to the FTUs. Conclusion: The impact of a WW can be quantified objectively by instrumented gait assessment. Thus, objective gait parameters may serve as surrogate markers for the use of walking aids in patients with gait and balance impairments.
KW - 4-wheeled walker
KW - Gait analysis
KW - Geriatric patients
KW - Risk-of-falling
UR - http://www.scopus.com/inward/record.url?scp=85015188525&partnerID=8YFLogxK
U2 - 10.1186/s12984-017-0228-z
DO - 10.1186/s12984-017-0228-z
M3 - Article
C2 - 28241769
AN - SCOPUS:85015188525
SN - 1743-0003
VL - 14
JO - Journal of NeuroEngineering and Rehabilitation
JF - Journal of NeuroEngineering and Rehabilitation
IS - 1
M1 - 18
ER -