Abstract
Synphilin-1 is linked to the pathogenesis of Parkinson's disease (PD) based on its identification as an α-synuclein (PARK1) and parkin (PARK2) interacting protein. Moreover, synphilin-1 is a component of Lewy bodies (LB) in brains of sporadic PD patients. Therefore, we performed a detailed mutation analysis of the synphilin-1 gene in 328 German familial and sporadic PD patients. In two apparently sporadic PD patients we deciphered a novel C to T transition in position 1861 of the coding sequence leading to an amino acid substitution from arginine to cysteine in position 621 (R621C). This mutation was absent in a total of 702 chromosomes of healthy German controls. To define a possible role of mutant synphilin-1 in the pathogenesis of PD we performed functional analyses in SH-SY5Y cells. We found synphilin-1 capable of producing cytoplasmic inclusions in transfected cells. Moreover we observed a significantly reduced number of inclusions in cells expressing C621 synphilin-1 compared with cells expressing wild-type (wt) synphilin-1, when subjected to proteasomal inhibition. C621 synphilin-1 transfected cells were more susceptible to staurosporine-induced cell death than cells expressing wt synphilin-1. Our findings argue in favour of a causative role of the R621C mutation in the synphilin-1 gene in PD and suggest that the formation of intracellular inclusions may be beneficial to cells and that a mutation in synphilin-1 that reduces this ability may sensitize neurons to cellular stress.
Original language | English |
---|---|
Pages (from-to) | 1223-1231 |
Number of pages | 9 |
Journal | Human Molecular Genetics |
Volume | 12 |
Issue number | 11 |
DOIs | |
Publication status | Published - 1 Jun 2003 |
Externally published | Yes |