Abstract
Aims: Cancer stem-like cells might have important functions in chemoresistance. We have developed a model where highly infiltrative brain tumours with a stem-like phenotype were established by orthotopic transplantation of human glioblastomas to immunodeficient rats. Serial passaging gradually transformed the tumours into a less invasive and more angiogenic phenotype (high-generation tumours). The invasive phenotype (low-generation tumours) was characterized by an increase in stem cell markers and increased phosphorylation of kinases in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. These markers were reduced in the serially passaged vascular tumours. The present study was aimed at investigating how the two phenotypes responded in vitro to doxorubicin, a clinically potent cytotoxic drug for solid tumours. Methods: Biopsy spheroids were implanted and passaged intracranially in nude rats. Gene expression and protein analyses were performed, and drug sensitivity was assessed. Results: Microarray analysis revealed gene ontology categories connected to developmental aspects and negative regulators of differentiation, especially in the infiltrative stem cell-like tumours. The highly invasive stem-like phenotype was chemoresistant compared with the angiogenic phenotype. By interfering with the PI3K it was possible to sensitize tumour spheroids to chemotherapy. Real-time quantitative polymerase chain reaction showed downregulation of the stem cell markers Nestin and Musashi-1 in low-generation biopsy spheroids following PI3K inhibition. Conclusions: Highly invasive tumours with a stem-like phenotype are more chemoresistant than angiogenic tumours derived from the same patients. We suggest that treatment resistance in glioblastomas can be related to PI3K/AKT activity in stem-like tumour cells, and that targeted interference with the PI3K/AKT pathway might differentiate and sensitize this subpopulation to chemotherapy.
Original language | English |
---|---|
Pages (from-to) | 380-393 |
Number of pages | 14 |
Journal | Neuropathology and Applied Neurobiology |
Volume | 35 |
Issue number | 4 |
DOIs | |
Publication status | Published - Aug 2009 |
Externally published | Yes |
Keywords
- Brain tumour
- Cancer stem-like cell
- Differentiation
- Stem cells
- Treatment resistance