TY - JOUR
T1 - HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130
AU - Göder, Anja
AU - Emmerich, Claudia
AU - Nikolova, Teodora
AU - Kiweler, Nicole
AU - Schreiber, Maria
AU - Kühl, Toni
AU - Imhof, Diana
AU - Christmann, Markus
AU - Heinzel, Thorsten
AU - Schneider, Günter
AU - Krämer, Oliver H.
N1 - Funding Information:
We thank all members of our groups for helpful discussion, and we thank S. Reichardt, T. Brachetti and S. Scheiding for technical assistance. This work was supported by grants from the Deutsche Krebshilfe (Grant No. FKZ102362 (110908/110909) to G.S. and O.H.K.), the Wilhelm Sander-Stiftung (Grant No. 2010.078.1 to O.H.K.) and the Deutsche For-schungsgemeinschaft (Grant Nos. KR2291/5-1 and KR2291/7-1 to O.H.K.). HCT116 cells were kindly provided by Professor Dr. B. Vogelstein (Baltimore, MD, USA). RKO and K562 cells were kindly provided by Dr. M. Zörnig and Dr. M. Grez (both Frankfurt/ Main, Germany), respectively. HA-PR130 plasmid was a kind gift from Professor Dr. R. Bernards (Amsterdam, the Netherlands). We thank Dr. V. Benes (Heidelberg, Germany) and Dr. M. Wirth (Munich, Germany) for help with microarray analysis and Professor Dr. J. Fahrer (Gießen, Germany) for helpful discussions.
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Checkpoint kinases sense replicative stress to prevent DNA damage. Here we show that the histone deacetylases HDAC1/HDAC2 sustain the phosphorylation of the checkpoint kinases ATM, CHK1 and CHK2, activity of the cell cycle gatekeeper kinases WEE1 and CDK1, and induction of the tumour suppressor p53 in response to stalled DNA replication. Consequently, HDAC inhibition upon replicative stress promotes mitotic catastrophe. Mechanistically, HDAC1 and HDAC2 suppress the expression of PPP2R3A/PR130, a regulatory subunit of the trimeric serine/threonine phosphatase 2 (PP2A). Genetic elimination of PR130 reveals that PR130 promotes dephosphorylation of ATM by PP2A. Moreover, the ablation of PR130 slows G1/S phase transition and increases the levels of phosphorylated CHK1, replication protein A foci and DNA damage upon replicative stress. Accordingly, stressed PR130 null cells are very susceptible to HDAC inhibition, which abrogates the S phase checkpoint, induces apoptosis and reduces the homologous recombination protein RAD51. Thus, PR130 controls cell fate decisions upon replicative stress.
AB - Checkpoint kinases sense replicative stress to prevent DNA damage. Here we show that the histone deacetylases HDAC1/HDAC2 sustain the phosphorylation of the checkpoint kinases ATM, CHK1 and CHK2, activity of the cell cycle gatekeeper kinases WEE1 and CDK1, and induction of the tumour suppressor p53 in response to stalled DNA replication. Consequently, HDAC inhibition upon replicative stress promotes mitotic catastrophe. Mechanistically, HDAC1 and HDAC2 suppress the expression of PPP2R3A/PR130, a regulatory subunit of the trimeric serine/threonine phosphatase 2 (PP2A). Genetic elimination of PR130 reveals that PR130 promotes dephosphorylation of ATM by PP2A. Moreover, the ablation of PR130 slows G1/S phase transition and increases the levels of phosphorylated CHK1, replication protein A foci and DNA damage upon replicative stress. Accordingly, stressed PR130 null cells are very susceptible to HDAC inhibition, which abrogates the S phase checkpoint, induces apoptosis and reduces the homologous recombination protein RAD51. Thus, PR130 controls cell fate decisions upon replicative stress.
UR - http://www.scopus.com/inward/record.url?scp=85042541567&partnerID=8YFLogxK
U2 - 10.1038/s41467-018-03096-0
DO - 10.1038/s41467-018-03096-0
M3 - Article
C2 - 29472538
AN - SCOPUS:85042541567
VL - 9
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 764
ER -