TY - JOUR
T1 - GRIP
T2 - A web-based system for constructing Gold Standard datasets for protein-protein interaction prediction
AU - Browne, Fiona
AU - Wang, Haiying
AU - Zheng, Huiru
AU - Azuaje, Francisco
N1 - Funding Information:
We wish to thank Anyela Camargo for her help and expertise with the hosting of GRIP on a Linux server. We would also like to thank Ulrich Gueldener for his expert advice on complex and localisation data in the MIPS CYGD Complex Catalogue. This work was supported in part by a grant from EU-FP6, CARDIOWORKBENCH project.
PY - 2009/1/26
Y1 - 2009/1/26
N2 - Background: Information about protein interaction networks is fundamental to understanding protein function and cellular processes. Interaction patterns among proteins can suggest new drug targets and aid in the design of new therapeutic interventions. Efforts have been made to map interactions on a proteomic-wide scale using both experimental and computational techniques. Reference datasets that contain known interacting proteins (positive cases) and non-interacting proteins (negative cases) are essential to support computational prediction and validation of protein-protein interactions. Information on known interacting and non interacting proteins are usually stored within databases. Extraction of these data can be both complex and time consuming. Although, the automatic construction of reference datasets for classification is a useful resource for researchers no public resource currently exists to perform this task. Results: GRIP (Gold Reference dataset constructor from Information on Protein complexes) is a web-based system that provides researchers with the functionality to create reference datasets for protein-protein interaction prediction in Saccharomyces cerevisiae. Both positive and negative cases for a reference dataset can be extracted, organised and downloaded by the user. GRIP also provides an upload facility whereby users can submit proteins to determine protein complex membership. A search facility is provided where a user can search for protein complex information in Saccharomyces cerevisiae. Conclusion: GRIP is developed to retrieve information on protein complex, cellular localisation, and physical and genetic interactions in Saccharomyces cerevisiae. Manual construction of reference datasets can be a time consuming process requiring programming knowledge. GRIP simplifies and speeds up this process by allowing users to automatically construct reference datasets.
AB - Background: Information about protein interaction networks is fundamental to understanding protein function and cellular processes. Interaction patterns among proteins can suggest new drug targets and aid in the design of new therapeutic interventions. Efforts have been made to map interactions on a proteomic-wide scale using both experimental and computational techniques. Reference datasets that contain known interacting proteins (positive cases) and non-interacting proteins (negative cases) are essential to support computational prediction and validation of protein-protein interactions. Information on known interacting and non interacting proteins are usually stored within databases. Extraction of these data can be both complex and time consuming. Although, the automatic construction of reference datasets for classification is a useful resource for researchers no public resource currently exists to perform this task. Results: GRIP (Gold Reference dataset constructor from Information on Protein complexes) is a web-based system that provides researchers with the functionality to create reference datasets for protein-protein interaction prediction in Saccharomyces cerevisiae. Both positive and negative cases for a reference dataset can be extracted, organised and downloaded by the user. GRIP also provides an upload facility whereby users can submit proteins to determine protein complex membership. A search facility is provided where a user can search for protein complex information in Saccharomyces cerevisiae. Conclusion: GRIP is developed to retrieve information on protein complex, cellular localisation, and physical and genetic interactions in Saccharomyces cerevisiae. Manual construction of reference datasets can be a time consuming process requiring programming knowledge. GRIP simplifies and speeds up this process by allowing users to automatically construct reference datasets.
UR - http://www.scopus.com/inward/record.url?scp=61349136339&partnerID=8YFLogxK
U2 - 10.1186/1751-0473-4-2
DO - 10.1186/1751-0473-4-2
M3 - Article
AN - SCOPUS:61349136339
SN - 1751-0473
VL - 4
JO - Source Code for Biology and Medicine
JF - Source Code for Biology and Medicine
M1 - 2
ER -