TY - JOUR
T1 - Genome-wide methylation profiling and copy number analysis in atypical fibroxanthomas and pleomorphic dermal sarcomas indicate a similar molecular phenotype
AU - Koelsche, Christian
AU - Stichel, Damian
AU - Griewank, Klaus G
AU - Schrimpf, Daniel
AU - Reuss, David E
AU - Bewerunge-Hudler, Melanie
AU - Vokuhl, Christian
AU - Dinjens, Winand N M
AU - Petersen, Iver
AU - Mittelbronn, Michel
AU - Cuevas-Bourdier, Adrian
AU - Buslei, Rolf
AU - Pfister, Stefan M
AU - Flucke, Uta
AU - Mechtersheimer, Gunhild
AU - Mentzel, Thomas
AU - von Deimling, Andreas
PY - 2019/2/14
Y1 - 2019/2/14
N2 - Background: Atypical fibroxanthomas (AFX) and pleomorphic dermal sarcomas (PDS) are lesions of the skin with overlapping histologic features and unspecific molecular traits. PDS behaves aggressive compared to AFX. Thus, a precise delineation, although challenging in some instances, is relevant.Methods: We examined the value of DNA-methylation profiling and copy number analysis for separating these tumors. DNA-methylation data were generated from 17 AFX and 15 PDS using the Illumina EPIC array. These were compared with DNA-methylation data generated from 196 tumors encompassing potential histologic mimics like cutaneous squamous carcinomas (cSCC; n = 19), basal cell carcinomas (n = 10), melanoma metastases originating from the skin (n = 11), leiomyosarcomas (n = 11), angiosarcomas of the skin and soft tissue (n = 11), malignant peripheral nerve sheath tumors (n = 19), dermatofibrosarcomas protuberans (n = 13), extraskeletal myxoid chondrosarcomas (n = 9), myxoid liposarcomas (n = 14), schwannomas (n = 10), neurofibromas (n = 21), alveolar (n = 19) and embryonal (n = 17) rhabdomyosarcomas as well as undifferentiated pleomorphic sarcomas (n = 12).Results: DNA-methylation profiling did not separate AFX from PDS. The DNA-methylation profiles of the other cases, however, were distinct from AFX/PDS. They reliably assigned to subtype-specific DNA-methylation clusters, although overlap occurred between some AFX/PDS and cSCC. Copy number profiling revealed alterations in a similar frequency and distribution between AFX and PDS. They involved losses of 9p (22/32) and 13q (25/32). Gains frequently involved 8q (8/32). Notably, a homozygous deletion of CDKN2A was more frequent in PDS (6/15) than in AFX (2/17), whereas amplifications were non-recurrent and overall rare (5/32).Conclusions: Our findings support the concept that AFX and PDS belong to a common tumor spectrum. We could demonstrate the diagnostic value of DNA-methylation profiling to delineating AFX/PDS from potential mimics. However, the assessment of certain histologic features remains crucial for separating PDS from AFX.
AB - Background: Atypical fibroxanthomas (AFX) and pleomorphic dermal sarcomas (PDS) are lesions of the skin with overlapping histologic features and unspecific molecular traits. PDS behaves aggressive compared to AFX. Thus, a precise delineation, although challenging in some instances, is relevant.Methods: We examined the value of DNA-methylation profiling and copy number analysis for separating these tumors. DNA-methylation data were generated from 17 AFX and 15 PDS using the Illumina EPIC array. These were compared with DNA-methylation data generated from 196 tumors encompassing potential histologic mimics like cutaneous squamous carcinomas (cSCC; n = 19), basal cell carcinomas (n = 10), melanoma metastases originating from the skin (n = 11), leiomyosarcomas (n = 11), angiosarcomas of the skin and soft tissue (n = 11), malignant peripheral nerve sheath tumors (n = 19), dermatofibrosarcomas protuberans (n = 13), extraskeletal myxoid chondrosarcomas (n = 9), myxoid liposarcomas (n = 14), schwannomas (n = 10), neurofibromas (n = 21), alveolar (n = 19) and embryonal (n = 17) rhabdomyosarcomas as well as undifferentiated pleomorphic sarcomas (n = 12).Results: DNA-methylation profiling did not separate AFX from PDS. The DNA-methylation profiles of the other cases, however, were distinct from AFX/PDS. They reliably assigned to subtype-specific DNA-methylation clusters, although overlap occurred between some AFX/PDS and cSCC. Copy number profiling revealed alterations in a similar frequency and distribution between AFX and PDS. They involved losses of 9p (22/32) and 13q (25/32). Gains frequently involved 8q (8/32). Notably, a homozygous deletion of CDKN2A was more frequent in PDS (6/15) than in AFX (2/17), whereas amplifications were non-recurrent and overall rare (5/32).Conclusions: Our findings support the concept that AFX and PDS belong to a common tumor spectrum. We could demonstrate the diagnostic value of DNA-methylation profiling to delineating AFX/PDS from potential mimics. However, the assessment of certain histologic features remains crucial for separating PDS from AFX.
UR - https://www.ncbi.nlm.nih.gov/pubmed/30809375
U2 - 10.1186/s13569-019-0113-6
DO - 10.1186/s13569-019-0113-6
M3 - Article
C2 - 30809375
SN - 2045-3329
VL - 9
SP - 2
JO - Clinical Sarcoma Research
JF - Clinical Sarcoma Research
ER -