Gait variability as digital biomarker of disease severity in Huntington’s disease

Heiko Gaßner, Dennis Jensen, F. Marxreiter, Anja Kletsch, Stefan Bohlen, Robin Schubert, Lisa M. Muratori, Bjoern Eskofier, Jochen Klucken, Jürgen Winkler, Ralf Reilmann, Zacharias Kohl*

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

29 Citations (Scopus)


Background: Impaired gait plays an important role for quality of life in patients with Huntington’s disease (HD). Measuring objective gait parameters in HD might provide an unbiased assessment of motor deficits in order to determine potential beneficial effects of future treatments. Objective: To objectively identify characteristic features of gait in HD patients using sensor-based gait analysis. Particularly, gait parameters were correlated to the Unified Huntington’s Disease Rating Scale, total motor score (TMS), and total functional capacity (TFC). Methods: Patients with manifest HD at two German sites (n = 43) were included and clinically assessed during their annual ENROLL-HD visit. In addition, patients with HD and a cohort of age- and gender-matched controls performed a defined gait test (4 × 10 m walk). Gait patterns were recorded by inertial sensors attached to both shoes. Machine learning algorithms were applied to calculate spatio-temporal gait parameters and gait variability expressed as coefficient of variance (CV). Results: Stride length (− 15%) and gait velocity (− 19%) were reduced, while stride (+ 7%) and stance time (+ 2%) were increased in patients with HD. However, parameters reflecting gait variability were substantially altered in HD patients (+ 17% stride length CV up to + 41% stride time CV with largest effect size) and showed strong correlations to TMS and TFC (0.416 ≤ rSp ≤ 0.690). Objective gait variability parameters correlated with disease stage based upon TFC. Conclusions: Sensor-based gait variability parameters were identified as clinically most relevant digital biomarker for gait impairment in HD. Altered gait variability represents characteristic irregularity of gait in HD and reflects disease severity.

Original languageEnglish
Pages (from-to)1594-1601
Number of pages8
JournalJournal of Neurology
Issue number6
Publication statusPublished - 1 Jun 2020
Externally publishedYes


  • Gait analysis
  • Gait variability
  • Huntington’s disease
  • Regularity of gait
  • Wearable sensors


Dive into the research topics of 'Gait variability as digital biomarker of disease severity in Huntington’s disease'. Together they form a unique fingerprint.

Cite this