TY - JOUR
T1 - Enhanced accumulation of phenolics in pea (Pisum sativum L.) seeds upon foliar application of selenate or zinc oxide
AU - Malka, Maksymilian
AU - Du Laing, Gijs
AU - Kurešová, Gabriela
AU - Hegedüsová, Alžbeta
AU - Bohn, Torsten
N1 - Funding Information:
This study was supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic (grant: VEGA 1/0105/14) and the Luxembourg Institute of Science and Technology.
Publisher Copyright:
Copyright © 2023 Malka, Du Laing, Kurešová, Hegedüsová and Bohn.
PY - 2023/3/30
Y1 - 2023/3/30
N2 - Background: Selenium (Se) and zinc (Zn) are essential antioxidant enzyme cofactors. Foliar Se/Zn application is a highly effective method of plant biofortification. However, little is known about the effect of such applications on the concentration of trace elements and phytochemicals with pro-oxidant or antioxidant activity in pea (Pisum sativum L.). Methods: A 2-year pot experiment (2014/2015) was conducted to examine the response of two pea varieties (Ambassador and Premium) to foliar-administered sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of selected trace elements (Fe, Cu, and Mn), total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity (ABTS, FRAP) of seeds were determined. Results and conclusions: Se/Zn treatments did not improve the concentration of trace elements, while they generally enhanced TPC. Among examined treatments, the highest TPC was found in Ambassador (from 2014) treated with 100 g Se/ha and 750 g Zn/ha (2,926 and 3,221 mg/100 g DW, respectively) vs. the control (1,737 mg/100 g DW). In addition, 50 g of Se/ha increased TFC vs. the control (261 vs. 151 mg/100 g DW) in Premium (from 2014), 750 g of Zn/ha increased ABTS vs. the control (25.2 vs. 59.5 mg/100 g DW) in Ambassador (from 2015), and 50 g of Se/ha increased FRAP vs. the control (26.6 vs. 18.0 mmol/100 g DW) in Ambassador (from 2015). In linear multivariable regression models, Zn, Mn, Cu, and TPC best explained ABTS (R = 0.577), while Se, Cu, and TPC best explained the FRAP findings (R = 0.696). This study highlights the potential of foliar biofortification with trace elements for producing pea/pea products rich in bioactive plant metabolites beneficial for human health.
AB - Background: Selenium (Se) and zinc (Zn) are essential antioxidant enzyme cofactors. Foliar Se/Zn application is a highly effective method of plant biofortification. However, little is known about the effect of such applications on the concentration of trace elements and phytochemicals with pro-oxidant or antioxidant activity in pea (Pisum sativum L.). Methods: A 2-year pot experiment (2014/2015) was conducted to examine the response of two pea varieties (Ambassador and Premium) to foliar-administered sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of selected trace elements (Fe, Cu, and Mn), total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity (ABTS, FRAP) of seeds were determined. Results and conclusions: Se/Zn treatments did not improve the concentration of trace elements, while they generally enhanced TPC. Among examined treatments, the highest TPC was found in Ambassador (from 2014) treated with 100 g Se/ha and 750 g Zn/ha (2,926 and 3,221 mg/100 g DW, respectively) vs. the control (1,737 mg/100 g DW). In addition, 50 g of Se/ha increased TFC vs. the control (261 vs. 151 mg/100 g DW) in Premium (from 2014), 750 g of Zn/ha increased ABTS vs. the control (25.2 vs. 59.5 mg/100 g DW) in Ambassador (from 2015), and 50 g of Se/ha increased FRAP vs. the control (26.6 vs. 18.0 mmol/100 g DW) in Ambassador (from 2015). In linear multivariable regression models, Zn, Mn, Cu, and TPC best explained ABTS (R = 0.577), while Se, Cu, and TPC best explained the FRAP findings (R = 0.696). This study highlights the potential of foliar biofortification with trace elements for producing pea/pea products rich in bioactive plant metabolites beneficial for human health.
KW - foliar Se/Zn application
KW - food security
KW - legume biofortification
KW - micronutrients
KW - mineral deficiency
KW - oxidative stress
KW - polyphenols
KW - trace elements
UR - http://www.scopus.com/inward/record.url?scp=85151359158&partnerID=8YFLogxK
UR - https://pubmed.ncbi.nlm.nih.gov/37063310
U2 - 10.3389/fnut.2023.1083253
DO - 10.3389/fnut.2023.1083253
M3 - Article
C2 - 37063310
SN - 2296-861X
VL - 10
JO - Frontiers in Nutrition
JF - Frontiers in Nutrition
M1 - 1083253
ER -