TY - JOUR
T1 - Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma
AU - Scholz, Alexander
AU - Harter, Patrick N.
AU - Cremer, Sebastian
AU - Yalcin, Burak H.
AU - Gurnik, Stefanie
AU - Yamaji, Maiko
AU - Di Tacchio, Mariangela
AU - Sommer, Kathleen
AU - Baumgarten, Peter
AU - Bähr, Oliver
AU - Steinbach, Joachim P.
AU - Trojan, Jörg
AU - Glas, Martin
AU - Herrlinger, Ulrich
AU - Krex, Dietmar
AU - Meinhardt, Matthias
AU - Weyerbrock, Astrid
AU - Timmer, Marco
AU - Goldbrunner, Roland
AU - Deckert, Martina
AU - Braun, Christian
AU - Schittenhelm, Jens
AU - Frueh, Jochen T.
AU - Ullrich, Evelyn
AU - Mittelbronn, Michel
AU - Plate, Karl H.
AU - Reiss, Yvonne
N1 - Publisher Copyright:
© 2016 EMBO.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206+ (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy. Synopsis: While recurrent glioblastoma is treated by inhibiting angiogenesis, resistance limits therapeutic efficacy. Angiopoietin-2 (Ang-2), a potent endothelium-derived angiogenesis factor and regulator of myeloid cell infiltration, is a therapeutic target for treating naive and bevacizumab-resistant glioblastoma. The therapeutic benefit of co-targeting Ang-2 and VEGF signaling (using AMG386 and aflibercept/VEGF-trap) is shown in mouse models of GBM. Ang-2 and VEGF combination therapy decreased GBM angiogenesis and permeability, improved vascular maturation, and limited the number of tumor-associated macrophages. Numbers of CD206+ (M2-like) macrophages remained high upon therapy, suggestive of subsequent targeting of M2-like macrophages in bevacizumab-resistant GBM. Inhibition of Ang-2, either alone or in combination with VEGF inhibition is of potential use to overcome resistance in GBM patients that have failed bevacizumab therapy. While recurrent glioblastoma is treated by inhibiting angiogenesis, resistance limits therapeutic efficacy. Angiopoietin-2 (Ang-2), a potent endothelium-derived angiogenesis factor and regulator of myeloid cell infiltration, is a therapeutic target for treating naive and bevacizumab-resistant glioblastoma.
AB - Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206+ (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy. Synopsis: While recurrent glioblastoma is treated by inhibiting angiogenesis, resistance limits therapeutic efficacy. Angiopoietin-2 (Ang-2), a potent endothelium-derived angiogenesis factor and regulator of myeloid cell infiltration, is a therapeutic target for treating naive and bevacizumab-resistant glioblastoma. The therapeutic benefit of co-targeting Ang-2 and VEGF signaling (using AMG386 and aflibercept/VEGF-trap) is shown in mouse models of GBM. Ang-2 and VEGF combination therapy decreased GBM angiogenesis and permeability, improved vascular maturation, and limited the number of tumor-associated macrophages. Numbers of CD206+ (M2-like) macrophages remained high upon therapy, suggestive of subsequent targeting of M2-like macrophages in bevacizumab-resistant GBM. Inhibition of Ang-2, either alone or in combination with VEGF inhibition is of potential use to overcome resistance in GBM patients that have failed bevacizumab therapy. While recurrent glioblastoma is treated by inhibiting angiogenesis, resistance limits therapeutic efficacy. Angiopoietin-2 (Ang-2), a potent endothelium-derived angiogenesis factor and regulator of myeloid cell infiltration, is a therapeutic target for treating naive and bevacizumab-resistant glioblastoma.
KW - Anti-angiogenic therapy
KW - Glioblastoma
KW - Macrophage polarization
KW - Therapy resistance
KW - Tumor angiogenesis
UR - http://www.scopus.com/inward/record.url?scp=84956829295&partnerID=8YFLogxK
U2 - 10.15252/emmm.201505505
DO - 10.15252/emmm.201505505
M3 - Article
C2 - 26666269
AN - SCOPUS:84956829295
SN - 1757-4676
VL - 8
SP - 39
EP - 57
JO - EMBO Molecular Medicine
JF - EMBO Molecular Medicine
IS - 1
ER -