Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours

Titus J. Brinker*, Lennard Kiehl, Max Schmitt, Tanja B. Jutzi, Eva I. Krieghoff-Henning, Dieter Krahl, Heinz Kutzner, Patrick Gholam, Sebastian Haferkamp, Joachim Klode, Dirk Schadendorf, Achim Hekler, Stefan Fröhling, Jakob N. Kather, Sarah Haggenmüller, Christof von Kalle, Markus Heppt, Franz Hilke, Kamran Ghoreschi, Markus TiemannUlrike Wehkamp, Axel Hauschild, Michael Weichenthal, Jochen S. Utikal

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

52 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours'. Together they form a unique fingerprint.

Medicine and Dentistry

Nursing and Health Professions

Keyphrases