TY - GEN
T1 - Data-driven Simulation and Optimization for Covid-19 Exit Strategies
AU - Ghamizi, Salah
AU - Rwemalika, Renaud
AU - Cordy, Maxime
AU - Veiber, Lisa
AU - Bissyandé, Tegawendé F.
AU - Papadakis, Mike
AU - Klein, Jacques
AU - Le Traon, Yves
N1 - Publisher Copyright:
© 2020 Owner/Author.
PY - 2020/8/23
Y1 - 2020/8/23
N2 - The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy. Chief among those measures is the massive lockdown of entire countries and cities, which beyond its global economic impact has created some deep social and psychological tensions within populations. While the adopted mitigation measures (including the lockdown) have generally proven useful, policymakers are now facing a critical question: how and when to lift the mitigation measures? A carefully-planned exit strategy is indeed necessary to recover from the pandemic without risking a new outbreak. Classically, exit strategies rely on mathematical modeling to predict the effect of public health interventions. Such models are unfortunately known to be sensitive to some key parameters, which are usually set based on rules-of-thumb. In this paper, we propose to augment epidemiological forecasting with actual data-driven models that will learn to fine-tune predictions for different contexts (e.g., per country). We have therefore built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease in order to predict the cases and deaths, and a genetic algorithm component searching for optimal trade-offs/policies between constraints and objectives set by decision-makers. Replaying pandemic evolution in various countries, we experimentally show that our approach yields predictions with much lower error rates than pure epidemiological models in 75% of the cases and achieves a 95% R2 score when the learning is transferred and tested on unseen countries. When used for forecasting, this approach provides actionable insights into the impact of individual measures and strategies.
AB - The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy. Chief among those measures is the massive lockdown of entire countries and cities, which beyond its global economic impact has created some deep social and psychological tensions within populations. While the adopted mitigation measures (including the lockdown) have generally proven useful, policymakers are now facing a critical question: how and when to lift the mitigation measures? A carefully-planned exit strategy is indeed necessary to recover from the pandemic without risking a new outbreak. Classically, exit strategies rely on mathematical modeling to predict the effect of public health interventions. Such models are unfortunately known to be sensitive to some key parameters, which are usually set based on rules-of-thumb. In this paper, we propose to augment epidemiological forecasting with actual data-driven models that will learn to fine-tune predictions for different contexts (e.g., per country). We have therefore built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease in order to predict the cases and deaths, and a genetic algorithm component searching for optimal trade-offs/policies between constraints and objectives set by decision-makers. Replaying pandemic evolution in various countries, we experimentally show that our approach yields predictions with much lower error rates than pure epidemiological models in 75% of the cases and achieves a 95% R2 score when the learning is transferred and tested on unseen countries. When used for forecasting, this approach provides actionable insights into the impact of individual measures and strategies.
KW - covid19
KW - deep learning
KW - exit strategies
KW - pandemic
KW - prediction
KW - search-based optimization
KW - seir
UR - http://www.scopus.com/inward/record.url?scp=85090416060&partnerID=8YFLogxK
U2 - 10.1145/3394486.3412863
DO - 10.1145/3394486.3412863
M3 - Conference contribution
AN - SCOPUS:85090416060
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 3434
EP - 3442
BT - KDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
Y2 - 23 August 2020 through 27 August 2020
ER -