TY - JOUR
T1 - Constrained Adaptive Attack
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
AU - Simonetto, Thibault
AU - Ghamizi, Salah
AU - Cordy, Maxime
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - State-of-the-art deep learning models for tabular data have recently achieved acceptable performance to be deployed in industrial settings. However, the robustness of these models remains scarcely explored. Contrary to computer vision, there are no effective attacks to properly evaluate the adversarial robustness of deep tabular models due to intrinsic properties of tabular data, such as categorical features, immutability, and feature relationship constraints. To fill this gap, we first propose CAPGD, a gradient attack that overcomes the failures of existing gradient attacks with adaptive mechanisms. This new attack does not require parameter tuning and further degrades the accuracy, up to 81% points compared to the previous gradient attacks. Second, we design CAA, an efficient evasion attack that combines our CAPGD attack and MOEVA, the best search-based attack. We demonstrate the effectiveness of our attacks on five architectures and four critical use cases. Our empirical study demonstrates that CAA outperforms all existing attacks in 17 over the 20 settings, and leads to a drop in the accuracy by up to 96.1% points and 21.9% points compared to CAPGD and MOEVA respectively while being up to five times faster than MOEVA. Given the effectiveness and efficiency of our new attacks, we argue that they should become the minimal test for any new defense or robust architectures in tabular machine learning.
AB - State-of-the-art deep learning models for tabular data have recently achieved acceptable performance to be deployed in industrial settings. However, the robustness of these models remains scarcely explored. Contrary to computer vision, there are no effective attacks to properly evaluate the adversarial robustness of deep tabular models due to intrinsic properties of tabular data, such as categorical features, immutability, and feature relationship constraints. To fill this gap, we first propose CAPGD, a gradient attack that overcomes the failures of existing gradient attacks with adaptive mechanisms. This new attack does not require parameter tuning and further degrades the accuracy, up to 81% points compared to the previous gradient attacks. Second, we design CAA, an efficient evasion attack that combines our CAPGD attack and MOEVA, the best search-based attack. We demonstrate the effectiveness of our attacks on five architectures and four critical use cases. Our empirical study demonstrates that CAA outperforms all existing attacks in 17 over the 20 settings, and leads to a drop in the accuracy by up to 96.1% points and 21.9% points compared to CAPGD and MOEVA respectively while being up to five times faster than MOEVA. Given the effectiveness and efficiency of our new attacks, we argue that they should become the minimal test for any new defense or robust architectures in tabular machine learning.
UR - http://www.scopus.com/inward/record.url?scp=105000496159&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000496159
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
Y2 - 9 December 2024 through 15 December 2024
ER -