TY - JOUR
T1 - Chemical evaluation of electronic cigarettes
T2 - Multicomponent analysis of liquid refills and their corresponding aerosols
AU - Beauval, Nicolas
AU - Antherieu, Sébastien
AU - Soyez, Mélissa
AU - Gengler, Nicolas
AU - Grova, Nathalie
AU - Howsam, Michael
AU - Hardy, Emilie M.
AU - Fischer, Marc
AU - Appenzeller, Brice M.R.
AU - Goossens, Jean François
AU - Allorge, Delphine
AU - Garçon, Guillaume
AU - Lo-Guidice, Jean Marc
AU - Garat, Anne
N1 - Publisher Copyright:
© The Author 2017. Published by Oxford University Press. All rights reserved.
PY - 2017/10/1
Y1 - 2017/10/1
N2 - Electronic cigarette use has raised concern worldwide regarding potential health risks and its position in tobacco cessation strategies. As part of any toxicity assessment, the chemical characterization of e-liquids and their related vapors are among fundamental data to be determined. Considering the lack of available reference methods, we developed and validated several analytical procedures in order to conduct a multicomponent analysis of six e-liquid refills and their resultant vapor emissions (generated by a smoking machine), and compared them with tobacco smoke. We combined several techniques including gas-chromatography, high and ultra-performance liquid chromatography and inductively coupled plasma with mass spectrometry or ultraviolet and flame ionization detection in order to identify the main e-liquid constituents (propylene glycol, glycerol and nicotine), as well as multiple potentially harmful components (trace elements, polycyclic aromatic hydrocarbons (PAHs), pesticides and carbonyl compounds). Regarding propylene glycol, glycerol and nicotine concentrations, the six tested e-liquids comply with the advertised composition and contain only traces of pollutants. Noticeable lower concentrations of trace elements (≤3.4 pg/mL puff), pesticides (<LOQ), PAHs (≤4.1 pg/mL puff) and carbonyls (≤2.11 ng/mL puff) were measured in e-vapors compared to those in cigarette smoke (up to 45.0 pg/mL puff, 8.7 pg/mL puff, 560.8 pg/mL puffand 1540 ng/mL puff, respectively). Although an accurate characterization of electronic cigarette emissions requires further analytical optimizations, our results have shown that vaping exposes the user to lesser amounts of selected toxic components of concern found in some representative French e-cigarette products than does smoking typical conventional cigarettes.
AB - Electronic cigarette use has raised concern worldwide regarding potential health risks and its position in tobacco cessation strategies. As part of any toxicity assessment, the chemical characterization of e-liquids and their related vapors are among fundamental data to be determined. Considering the lack of available reference methods, we developed and validated several analytical procedures in order to conduct a multicomponent analysis of six e-liquid refills and their resultant vapor emissions (generated by a smoking machine), and compared them with tobacco smoke. We combined several techniques including gas-chromatography, high and ultra-performance liquid chromatography and inductively coupled plasma with mass spectrometry or ultraviolet and flame ionization detection in order to identify the main e-liquid constituents (propylene glycol, glycerol and nicotine), as well as multiple potentially harmful components (trace elements, polycyclic aromatic hydrocarbons (PAHs), pesticides and carbonyl compounds). Regarding propylene glycol, glycerol and nicotine concentrations, the six tested e-liquids comply with the advertised composition and contain only traces of pollutants. Noticeable lower concentrations of trace elements (≤3.4 pg/mL puff), pesticides (<LOQ), PAHs (≤4.1 pg/mL puff) and carbonyls (≤2.11 ng/mL puff) were measured in e-vapors compared to those in cigarette smoke (up to 45.0 pg/mL puff, 8.7 pg/mL puff, 560.8 pg/mL puffand 1540 ng/mL puff, respectively). Although an accurate characterization of electronic cigarette emissions requires further analytical optimizations, our results have shown that vaping exposes the user to lesser amounts of selected toxic components of concern found in some representative French e-cigarette products than does smoking typical conventional cigarettes.
UR - http://www.scopus.com/inward/record.url?scp=85031929072&partnerID=8YFLogxK
U2 - 10.1093/jat/bkx054
DO - 10.1093/jat/bkx054
M3 - Article
C2 - 28985322
AN - SCOPUS:85031929072
VL - 41
SP - 670
EP - 678
JO - Journal of Analytical Toxicology
JF - Journal of Analytical Toxicology
SN - 0146-4760
IS - 8
ER -