TY - JOUR
T1 - Central oscillators in a patient with neuropathic tremor
T2 - Evidence from intraoperative local field potential recordings
AU - Weiss, Daniel
AU - Govindan, Rathinaswamy B.
AU - Rilk, Albrecht
AU - Wächter, Tobias
AU - Breit, Sorin
AU - Zizlsperger, Leopold
AU - Haarmeier, Thomas
AU - Plewnia, Christian
AU - Krüger, Rejko
AU - Gharabaghi, Alireza
PY - 2011/2/1
Y1 - 2011/2/1
N2 - Present pathophysiological concepts of neuropathic tremor assume mistimed and defective afferent input resulting in deregulation of cerebello-thalamo-cortical motor networks. Here, we provide direct evidence of central tremor processing in a 76-year-old female who underwent bilateral deep brain stimulation of the ventral intermedial nucleus of the thalamus (Vim-DBS) because of neuropathic tremor associated with IgM paraproteinemia. Electrophysiological recordings of EEG and EMG were performed in three perioperative sessions: (1) preoperatively, (2) intraoperatively, and (3) 4 days after surgery in both rest and postural tremor conditions. Tremor-related synchronization (coherence) between motor cortex (M1) and muscles (M. extensor digitorum, M. flexor digitorum) was assessed, and additional intraoperative local field potential (LFP) recordings from Vim allowed comprehensive coherence mapping in thalamo-cortico-muscular networks. Directionality of information flow was determined by directed transfer function (DTF) and phase analyses. Stimulation effects on tremor and corticomuscular coherence were assessed and the patient was followed for 12 months on clinical outcome measures (Tremor Rating Scale, CADET-Score). Vim-DBS reduced tremor (59%) and improved motor functionality in daily activities (31%, CADET-A) after 12 months. Intraoperative recordings demonstrated significant coherence in the tremor frequency (4 Hz) between M1 and contralateral muscle, Vim and ipsilateral M1, Vim and contralateral muscle, but not between Vim and contralateral M1. Information flow was directed from M1 to Vim and bidirectional between M1 and muscle and between Vim and muscle, respectively. Corticomuscular coherence at tremor frequency was completely suppressed by Vim-DBS. Our case study demonstrates central oscillators underlying neuropathic tremor and implies a strong pathophysiological rationale for Vim-DBS.
AB - Present pathophysiological concepts of neuropathic tremor assume mistimed and defective afferent input resulting in deregulation of cerebello-thalamo-cortical motor networks. Here, we provide direct evidence of central tremor processing in a 76-year-old female who underwent bilateral deep brain stimulation of the ventral intermedial nucleus of the thalamus (Vim-DBS) because of neuropathic tremor associated with IgM paraproteinemia. Electrophysiological recordings of EEG and EMG were performed in three perioperative sessions: (1) preoperatively, (2) intraoperatively, and (3) 4 days after surgery in both rest and postural tremor conditions. Tremor-related synchronization (coherence) between motor cortex (M1) and muscles (M. extensor digitorum, M. flexor digitorum) was assessed, and additional intraoperative local field potential (LFP) recordings from Vim allowed comprehensive coherence mapping in thalamo-cortico-muscular networks. Directionality of information flow was determined by directed transfer function (DTF) and phase analyses. Stimulation effects on tremor and corticomuscular coherence were assessed and the patient was followed for 12 months on clinical outcome measures (Tremor Rating Scale, CADET-Score). Vim-DBS reduced tremor (59%) and improved motor functionality in daily activities (31%, CADET-A) after 12 months. Intraoperative recordings demonstrated significant coherence in the tremor frequency (4 Hz) between M1 and contralateral muscle, Vim and ipsilateral M1, Vim and contralateral muscle, but not between Vim and contralateral M1. Information flow was directed from M1 to Vim and bidirectional between M1 and muscle and between Vim and muscle, respectively. Corticomuscular coherence at tremor frequency was completely suppressed by Vim-DBS. Our case study demonstrates central oscillators underlying neuropathic tremor and implies a strong pathophysiological rationale for Vim-DBS.
KW - Coherence
KW - Deep brain stimulation
KW - Local field potentials
KW - Neuropathy
KW - Tremor
UR - http://www.scopus.com/inward/record.url?scp=79952689622&partnerID=8YFLogxK
U2 - 10.1002/mds.23374
DO - 10.1002/mds.23374
M3 - Article
AN - SCOPUS:79952689622
SN - 0885-3185
VL - 26
SP - 323
EP - 327
JO - Movement Disorders
JF - Movement Disorders
IS - 2
ER -