TY - JOUR
T1 - CD66b+/CD68+ circulating extracellular vesicles, lactate dehydrogenase and neutrophil-to-lymphocyte ratio can differentiate coronavirus disease 2019 severity during and after infection
AU - Suades, Rosa
AU - Greco, Maria Francesca
AU - Prieto, Paula
AU - Padró, Teresa
AU - Devaux, Yvan
AU - Domingo, Pere
AU - Badimon, Lina
N1 - Publisher Copyright:
© 2024 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.
PY - 2024/7
Y1 - 2024/7
N2 - Coronavirus disease 2019 (COVID-19) has been a major public health burden. We hypothesised that circulating extracellular vesicles (cEVs), key players in health and disease, could trace the cell changes during COVID-19 infection and recovery. Therefore, we studied the temporal trend of cEV and inflammatory marker levels in plasma samples of COVID-19 patients that were collected within 24 h of patient admission (baseline, n = 80) and after hospital discharge at day-90 post-admission (n = 59). Inflammatory markers were measured by standard biochemical methods. cEVs were quantitatively and phenotypically characterized by high-sensitivity nano flow cytometry. In patients recovered from COVID-19 lower levels of inflammatory markers were detected. cEVs from vascular (endothelial cells) and blood (platelets, distinct immune subsets) cells were significantly reduced at day-90 compared to admission levels, a pattern also observed for cEVs from progenitor, perivascular and epithelial cells. The best discriminatory power for COVID-19 severity was found for inflammatory markers lactate dehydrogenase and neutrophil-to-lymphocyte ratio and for granulocyte/macrophage-released CD66b+/CD68+-cEVs. Albeit inflammatory markers were good indicators of systemic inflammatory response and discriminators of COVID-19 remission, they do not completely reveal cell stress and organ damage states. cEVs reaching baseline pre-infection levels at 90 days post-infection in recovered patients discriminate parental cells affected by disease.
AB - Coronavirus disease 2019 (COVID-19) has been a major public health burden. We hypothesised that circulating extracellular vesicles (cEVs), key players in health and disease, could trace the cell changes during COVID-19 infection and recovery. Therefore, we studied the temporal trend of cEV and inflammatory marker levels in plasma samples of COVID-19 patients that were collected within 24 h of patient admission (baseline, n = 80) and after hospital discharge at day-90 post-admission (n = 59). Inflammatory markers were measured by standard biochemical methods. cEVs were quantitatively and phenotypically characterized by high-sensitivity nano flow cytometry. In patients recovered from COVID-19 lower levels of inflammatory markers were detected. cEVs from vascular (endothelial cells) and blood (platelets, distinct immune subsets) cells were significantly reduced at day-90 compared to admission levels, a pattern also observed for cEVs from progenitor, perivascular and epithelial cells. The best discriminatory power for COVID-19 severity was found for inflammatory markers lactate dehydrogenase and neutrophil-to-lymphocyte ratio and for granulocyte/macrophage-released CD66b+/CD68+-cEVs. Albeit inflammatory markers were good indicators of systemic inflammatory response and discriminators of COVID-19 remission, they do not completely reveal cell stress and organ damage states. cEVs reaching baseline pre-infection levels at 90 days post-infection in recovered patients discriminate parental cells affected by disease.
KW - coronavirus disease 2019
KW - extracellular vesicles
KW - inflammatory markers
KW - microvesicles
KW - severe acute respiratory syndrome coronavirus-2
UR - http://www.scopus.com/inward/record.url?scp=85198342330&partnerID=8YFLogxK
UR - https://pubmed.ncbi.nlm.nih.gov/39007437/
U2 - 10.1002/jev2.12456
DO - 10.1002/jev2.12456
M3 - Article
C2 - 39007437
AN - SCOPUS:85198342330
SN - 2001-3078
VL - 13
JO - Journal of Extracellular Vesicles
JF - Journal of Extracellular Vesicles
IS - 7
M1 - e12456
ER -