Cathepsin L silencing increases As2O3 toxicity in malignantly transformed pilocytic astrocytoma MPA58 cells by activating caspases 3/7

Monika Primon*, Peter C. Huszthy, Helena Motaln, Krishna M. Talasila, Hrvoje Miletic, Nadia A. Atai, Rolf Bjerkvig, Tamara Lah Turnšek

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)

Abstract

Low-grade, pilocytic astrocytomas are treated by resection, but additional therapy is necessary for those tumors with anaplastic features. Arsenic trioxide (As2O3) is emerging as an effective chemotherapeutic agent for treatment of malignant glioblastoma multiforme, where Cathepsin L silencing enables lower, less harmful As2O3 concentrations to achieve the desired cytotoxic effect. Here, we evaluated the effects of As2O3 combined with stable Cathepsin L shRNA silencing on cell viability/metabolic activity, and apoptosis in primary cultures of recurrent malignantly transformed pilocytic astrocytoma (MPA). These cells expressed high Cathepsin L levels, and when grown as monolayers and spheroids, they were more resistant to As2O3 than the U87MG glioblastoma cell line. Caspases 3/7 activity in MPA58 spheroids was not significantly affected by As2O3, possibly due to higher chemoresistance of primary biopsy tissue of less malignant astrocytoma versus the malignant U87MG cell line. However, As2O3 treatment was cytotoxic to MPA spheroids after silencing of Cathepsin L expression. While Cathepsin L silencing only slightly decreased the live/dead cell ratio in As2O3-treated MPA-si spheroids under our experimental conditions, there was an increase in As2O3-mediated apoptosis in MPA-si spheroids, as indicated by elevated caspases 3/7 activity. Therefore, Cathepsin L silencing by gene manipulation can be applied when a more aggressive approach is needed in treatment of pilocytic astrocytomas with anaplastic features.

Original languageEnglish
Pages (from-to)64-73
Number of pages10
JournalExperimental Cell Research
Volume356
Issue number1
DOIs
Publication statusPublished - 1 Jul 2017
Externally publishedYes

Keywords

  • Anaplastic features
  • Arsenic trioxide
  • Cathepsin L
  • Drug resistance
  • Malignantly transformed pilocytic astrocytoma

Fingerprint

Dive into the research topics of 'Cathepsin L silencing increases As2O3 toxicity in malignantly transformed pilocytic astrocytoma MPA58 cells by activating caspases 3/7'. Together they form a unique fingerprint.

Cite this