Abstract
Human erythrocytes (E) react by exocytosis of membrane vesicles to various stresses including the fixation of the membrane attack complex of Complement. E from normal individuals loose a notable proportion of their initial number of surface CR1 molecules during the ageing process. An acquired decrease of CR1 on E also occurs in pathological conditions such as Systemic Lupus Erythematosus or AIDS. The present study investigated whether calcium ionophore A23187 (Ca-ion) induced vesicle formation of human E in vitro is responsible for a preferential loss of CR1 as well as whether CR1 molecules at the surface of Ca-ion treated E or vesicles are: (i) functional, (ii) native or protease degraded, or (iii) more clustered than CR1 on native E. A study of E from 137 normal individuals showed that a one-hour Ca-ion induced vesicle formation preferentially removed one third of E surface CR1. Kinetic experiments suggested that all surface CR1 could be removed from E upon longer incubation times. CR1 molecules on vesicles were still able to inhibit Complement activation, and were found in larger clusters than on native E. These data suggest that a significant part of surface CR1 molecules may be removed from E by vesicle formation during the life of E in normal individuals. This phenomenon could be exacerbated in pathological conditions.
Original language | English |
---|---|
Pages (from-to) | 129-140 |
Number of pages | 12 |
Journal | Immunopharmacology |
Volume | 38 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Dec 1997 |
Externally published | Yes |
Keywords
- Calcium ionophore A23187
- Complement receptor type 1 (CR1)
- Electron microscopy
- Erythrocyte
- Exocytosis
- Flow cytometry