Bevacizumab and radiotherapy for the treatment of glioblastoma: Brothers in arms or unholy alliance?

Maximilian Niyazi, Patrick N. Harter, Elke Hattingen, Maya Rottler, Louisa von Baumgarten, Martin Proescholdt, Claus Belka, Kirsten Lauber*, Michel Mittelbronn

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

27 Citations (Scopus)


Glioblastoma (GBM) represents the most frequent primary brain tumor in adults and carries a dismal prognosis despite aggressive, multimodal treatment regimens involving maximal resection, radiochemotherapy, and maintenance chemotherapy. Histologically, GBMs are characterized by a high degree of VEGF-mediated vascular proliferation. In consequence, new targeted anti-angiogenic therapies, such as the monoclonal anti-VEGF-A antibody bevacizumab, have proven effective in attenuating tumor (neo)angiogenesis and were shown to possess therapeutic activity in several phase II trials. However, the role of bevacizumab in the context of multimodal therapy approaches appears to be rather complex. This review will give insights into current concepts, limitations, and controversies regarding the molecular mechanisms and the clinical benefits of bevacizumab treatment in combination with radio(chemo) therapy - particularly in face of the results of recent phase III trials, which failed to demonstrate convincing improvements in overall survival (OS).

Original languageEnglish
Pages (from-to)2313-2328
Number of pages16
Issue number3
Publication statusPublished - 2016
Externally publishedYes


  • Angiogenesis
  • Bevacizumab
  • Glioma
  • Radiotherapy
  • VEGF


Dive into the research topics of 'Bevacizumab and radiotherapy for the treatment of glioblastoma: Brothers in arms or unholy alliance?'. Together they form a unique fingerprint.

Cite this