Automatic clinical gait test detection from inertial sensor data

Stefan Fischer, Martin Ullrich, Arne Kuderle, Heiko Gasner, Jochen Klucken, Bjoern M. Eskofier, Felix Kluge

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

The analysis of gait data is one approach to support clinicians with the diagnosis and therapy of diseases, for example Parkinson's disease (PD). Traditionally, gait data of standardized tests in the clinic is analyzed, ensuring a predefined setting. In recent years, long-term home-based gait analysis has been used to acquire a more representative picture of the patient's disease status. Data is recorded in a less artifical setting and therefore allows a more realistic perception of the disease progression. However, fully unsupervised gait data without additional context information impedes interpretation. As an intermediate solution, performance of gait tests at home was introduced. Integration of instrumented gait test requires annotations of those tests for their identification and further processing. To overcome these limitations, we developed an algorithm for automatic detection of standardized gait tests from continuous sensor data with the goal of making manual annotations obsolete. The method is based on dynamic time warping, which compares an input signal with a predefined template and quantifies similarity between both. Different templates were compared and an optimized template was created. The classification scored a F1-measure of 86.7% for evaluation on a data set acquired in a clinical setting. We believe that this approach can be transferred to home-monitoring systems and will facilitate a more efficient and automated gait analysis.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages789-792
Number of pages4
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - Jul 2020
Externally publishedYes
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 20 Jul 202024 Jul 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/07/2024/07/20

Fingerprint

Dive into the research topics of 'Automatic clinical gait test detection from inertial sensor data'. Together they form a unique fingerprint.

Cite this