TY - GEN
T1 - Automatic clinical gait test detection from inertial sensor data
AU - Fischer, Stefan
AU - Ullrich, Martin
AU - Kuderle, Arne
AU - Gasner, Heiko
AU - Klucken, Jochen
AU - Eskofier, Bjoern M.
AU - Kluge, Felix
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - The analysis of gait data is one approach to support clinicians with the diagnosis and therapy of diseases, for example Parkinson's disease (PD). Traditionally, gait data of standardized tests in the clinic is analyzed, ensuring a predefined setting. In recent years, long-term home-based gait analysis has been used to acquire a more representative picture of the patient's disease status. Data is recorded in a less artifical setting and therefore allows a more realistic perception of the disease progression. However, fully unsupervised gait data without additional context information impedes interpretation. As an intermediate solution, performance of gait tests at home was introduced. Integration of instrumented gait test requires annotations of those tests for their identification and further processing. To overcome these limitations, we developed an algorithm for automatic detection of standardized gait tests from continuous sensor data with the goal of making manual annotations obsolete. The method is based on dynamic time warping, which compares an input signal with a predefined template and quantifies similarity between both. Different templates were compared and an optimized template was created. The classification scored a F1-measure of 86.7% for evaluation on a data set acquired in a clinical setting. We believe that this approach can be transferred to home-monitoring systems and will facilitate a more efficient and automated gait analysis.
AB - The analysis of gait data is one approach to support clinicians with the diagnosis and therapy of diseases, for example Parkinson's disease (PD). Traditionally, gait data of standardized tests in the clinic is analyzed, ensuring a predefined setting. In recent years, long-term home-based gait analysis has been used to acquire a more representative picture of the patient's disease status. Data is recorded in a less artifical setting and therefore allows a more realistic perception of the disease progression. However, fully unsupervised gait data without additional context information impedes interpretation. As an intermediate solution, performance of gait tests at home was introduced. Integration of instrumented gait test requires annotations of those tests for their identification and further processing. To overcome these limitations, we developed an algorithm for automatic detection of standardized gait tests from continuous sensor data with the goal of making manual annotations obsolete. The method is based on dynamic time warping, which compares an input signal with a predefined template and quantifies similarity between both. Different templates were compared and an optimized template was created. The classification scored a F1-measure of 86.7% for evaluation on a data set acquired in a clinical setting. We believe that this approach can be transferred to home-monitoring systems and will facilitate a more efficient and automated gait analysis.
UR - http://www.scopus.com/inward/record.url?scp=85091033121&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9176440
DO - 10.1109/EMBC44109.2020.9176440
M3 - Conference contribution
AN - SCOPUS:85091033121
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 789
EP - 792
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -