TY - JOUR
T1 - An efficient two-digit adaptive delta modulation for Laplacian source coding
AU - Peric, Zoran
AU - Denic, Bojan
AU - Despotovic, Vladimir
N1 - Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2019/7/3
Y1 - 2019/7/3
N2 - Delta Modulation (DM) is a simple waveform coding algorithm used mostly when timely data delivery is more important than the transmitted data quality. While the implementation of DM is fairly simple and inexpensive, it suffers from several limitations, such as slope overload and granular noise, which can be overcome using Adaptive Delta Modulation (ADM). This paper presents novel 2-digit ADM with six-level quantization using variable-length coding, for encoding the time-varying signals modelled by Laplacian distribution. Two variants of quantizer are employed, distortion-constrained quantizer which is optimally designed for minimal mean-squared error (MSE), and rate-constrained quantizer, which is suboptimal in the minimal MSE sense, but enables minimal loss in SQNR for the target bit rate. Experimental results using real speech signal are provided, indicating that the proposed configuration outperforms the baseline ADM algorithms, including Constant Factor Delta Modulation (CFDM), Continuously Variable Slope Delta Modulation (CVSDM), 2-digit and 2-bit ADM, and operates in a much wider dynamic range.
AB - Delta Modulation (DM) is a simple waveform coding algorithm used mostly when timely data delivery is more important than the transmitted data quality. While the implementation of DM is fairly simple and inexpensive, it suffers from several limitations, such as slope overload and granular noise, which can be overcome using Adaptive Delta Modulation (ADM). This paper presents novel 2-digit ADM with six-level quantization using variable-length coding, for encoding the time-varying signals modelled by Laplacian distribution. Two variants of quantizer are employed, distortion-constrained quantizer which is optimally designed for minimal mean-squared error (MSE), and rate-constrained quantizer, which is suboptimal in the minimal MSE sense, but enables minimal loss in SQNR for the target bit rate. Experimental results using real speech signal are provided, indicating that the proposed configuration outperforms the baseline ADM algorithms, including Constant Factor Delta Modulation (CFDM), Continuously Variable Slope Delta Modulation (CVSDM), 2-digit and 2-bit ADM, and operates in a much wider dynamic range.
KW - Delta modulation
KW - Laplacian source
KW - SNR
KW - predictive coding
KW - speech coding
UR - http://www.scopus.com/inward/record.url?scp=85062463460&partnerID=8YFLogxK
U2 - 10.1080/00207217.2019.1582707
DO - 10.1080/00207217.2019.1582707
M3 - Article
AN - SCOPUS:85062463460
SN - 0020-7217
VL - 106
SP - 1085
EP - 1100
JO - International Journal of Electronics
JF - International Journal of Electronics
IS - 7
ER -