Adenoviral delivery of the CIITA transgene induces T-cell-mediated killing in glioblastoma organoids

Ilaria Salvato, Eliane Klein, Aurélie Poli, Mahsa Rezaeipour, Luca Ermini, Bakhtiyor Nosirov, Anuja Lipsa, Anaïs Oudin, Virginie Baus, Gian Mario Dore, Antonio Cosma, Anna Golebiewska, Antonio Marchini, Simone P. Niclou*

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The immunosuppressive nature of the tumor microenvironment poses a significant challenge to effective immunotherapies against glioblastoma (GB). Boosting the immune response is critical for successful therapy. Here, we adopted a cancer gene therapy approach to induce T-cell-mediated killing of the tumor through increased activation of the immune system. Patient-based three-dimensional (3D) GB models were infected with a replication-deficient adenovirus (AdV) armed with the class II major histocompatibility complex (MHC-II) transactivator (CIITA) gene (Ad-CIITA). Successful induction of surface MHC-II was achieved in infected GB cell lines and primary human GB organoids. Infection with an AdV carrying a mutant form of CIITA with a single amino acid substitution resulted in cytoplasmic accumulation of CIITA without subsequent MHC-II expression. Co-culture of infected tumor cells with either peripheral blood mononuclear cells (PBMCs) or isolated T-cells led to dramatic breakdown of GB organoids. Intriguingly, both wild-type and mutant Ad-CIITA, but not unarmed AdV, triggered immune-mediated tumor cell death in the co-culture system, suggesting an at least partially MHC-II-independent process. We further show that the observed cancer cell killing requires the presence of either CD8+ or CD4+ T-cells and direct contact between GB and immune cells. We did not, however, detect evidence of activation of canonical T-cell-mediated cell death pathways. Although the precise mechanism remains to be determined, these findings highlight the potential of AdV-mediated CIITA delivery to enhance T-cell-mediated immunity against GB.

Original languageEnglish
Number of pages16
JournalMolecular Oncology
DOIs
Publication statusE-pub ahead of print - 13 Nov 2024

Keywords

  • MHC-II
  • T-cells
  • adenovirus
  • gene therapy
  • glioblastoma
  • tumor organoids

Fingerprint

Dive into the research topics of 'Adenoviral delivery of the CIITA transgene induces T-cell-mediated killing in glioblastoma organoids'. Together they form a unique fingerprint.

Cite this