Actin cytoskeleton depolymerization increases matrix metalloproteinase gene expression in breast cancer cells by promoting translocation of cysteine-rich protein 2 to the nucleus

Takouhie Mgrditchian, Joshua Brown-Clay (Main author), Céline Hoffmann, Tanja Müller, Liza Filali, Elena Ockfen, Xianqing Mao, Flora Moreau, Carla Pou Casellas, Tony Kaoma, Michel Mittelbronn, Clément Thomas*

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

2 Citations (Scopus)

Abstract

The actin cytoskeleton plays a critical role in cancer cell invasion and metastasis; however, the coordination of its multiple functions remains unclear. Actin dynamics in the cytoplasm control the formation of invadopodia, which are membrane protrusions that facilitate cancer cell invasion by focusing the secretion of extracellular matrix-degrading enzymes, including matrix metalloproteinases (MMPs). In this study, we investigated the nuclear role of cysteine-rich protein 2 (CRP2), a two LIM domain-containing F-actin-binding protein that we previously identified as a cytoskeletal component of invadopodia, in breast cancer cells. We found that F-actin depolymerization stimulates the translocation of CRP2 into the nucleus, resulting in an increase in the transcript levels of pro-invasive and pro-metastatic genes, including several members of the MMP gene family. We demonstrate that in the nucleus, CRP2 interacts with the transcription factor serum response factor (SRF), which is crucial for the expression of MMP-9 and MMP-13. Our data suggest that CRP2 and SRF cooperate to modulate of MMP expression levels. Furthermore, Kaplan-Meier analysis revealed a significant association between high-level expression of SRF and shorter overall survival and distant metastasis-free survival in breast cancer patients with a high CRP2 expression profile. Our findings suggest a model in which CRP2 mediates the coordination of cytoplasmic and nuclear processes driven by actin dynamics, ultimately resulting in the induction of invasive and metastatic behavior in breast cancer cells.

Original languageEnglish
Article number1100938
JournalFrontiers in Cell and Developmental Biology
Volume11
DOIs
Publication statusPublished - 15 May 2023

Keywords

  • Actin cytoskeleton
  • breast cancer
  • cysteine-rich protein 2 (CRP2)
  • gene transcription
  • matrix metalloproteinases (MMPs)
  • metastasis
  • serum response factor (SRF)

Fingerprint

Dive into the research topics of 'Actin cytoskeleton depolymerization increases matrix metalloproteinase gene expression in breast cancer cells by promoting translocation of cysteine-rich protein 2 to the nucleus'. Together they form a unique fingerprint.

Cite this