Accurate long-read sequencing identified GBA variants as a major genetic risk factor in the Luxembourg Parkinson's study

S. Pachchek Peiris, Z. Landoulsi, L. Pavelka, C. Schulte, E. Buena-Atienza, C. Gross, A.-K. Hauser, D. R. Bobbili, N. Casadei, P. May, R. Krüger, Rejko Krueger*

*Corresponding author for this work

Research output: Working paperPreprint

Abstract

Heterozygous variants in the glucocerebrosidase GBA gene are an increasingly recognized risk factor for Parkinsons disease (PD). Due to the pseudogene GBAP1 that shares 96% sequence homology with the GBA coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA-related PD. We established a novel long-read sequencing technology for assessing the full length of the GBA gene. We used subsequent regression models for genotype-phenotype analyses. We sequenced 752 patients with parkinsonism and 806 healthy controls of the Luxembourg Parkinsons study. All GBA variants identified showed a 100% true positive rate by Sanger validation. We found 12% of unrelated PD patients carrying GBA variants. Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA-related parkinsonism in Luxembourg, showing a high prevalence of GBA variants as the major genetic risk for PD. Our approach provides an important advancement for highly accurate GBA variant calling, which is essential for providing access to emerging causative therapies for GBA carriers.
Original languageEnglish
DOIs
Publication statusPublished - 30 Mar 2023

Keywords

  • genetic and genomic medicine

Fingerprint

Dive into the research topics of 'Accurate long-read sequencing identified GBA variants as a major genetic risk factor in the Luxembourg Parkinson's study'. Together they form a unique fingerprint.

Cite this