Abstract
The pathogenesis of chronic lymphocytic leukemia (CLL) has been linked to constitutive NF-κB activation but the underlying mechanisms are poorly understood. Here we show that alternative splicing of the negative regulator of NF-κB and tumor suppressor gene CYLD regulates the pool of CD5+ B cells through sustained canonical NF-κB signaling. Reinforced canonical NF-κB activity leads to the development of B1 cell-associated tumor formation in aging mice by promoting survival and proliferation of CD5+ B cells, highly reminiscent of human B-CLL. We show that a substantial number of CLL patient samples express sCYLD, strongly implicating a role for it in human B-CLL. We propose that our new CLL-like mouse model represents an appropriate tool for studying ubiquitination-driven canonical NF-κB activation in CLL. Thus, inhibition of alternative splicing of this negative regulator is essential for preventing NF-κB-driven clonal CD5+ B-cell expansion and ultimately CLL-like disease.
Original language | English |
---|---|
Pages (from-to) | 72-82 |
Number of pages | 11 |
Journal | Leukemia |
Volume | 32 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2018 |