Organization profile

The NORLUX Neuro-Oncology laboratory was set up through a collaborative agreement between LIH and the University of Bergen in Norway based on an extensive collaboration with Prof. Rolf Bjerkvig from the Department of Biomedicine at the University of Bergen. The mission of our lab is to improve the life and prognosis of people affected by a malignant brain tumor.  

We aim to improve the treatment options for malignant brain tumors, with a focus on diffuse gliomas. With a radically translational approach to research, we work with patient samples and innovative patient-derived preclinical model systems that recapitulate the patient tumor. Our research investigates the cellular and molecular basis of gliomas, their capacity to invade the normal brain and escape therapy. Special areas of interests are tumor plasticity, tumor heterogeneity, tumor metabolism, immuno-oncology and pharmacogenomics. 

Fingerprint

Dive into the research topics where NORLUX Neuro-Oncology Laboratory is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.

Network

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
  • Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma

    Yabo, Y. A., Niclou, S. P. & Golebiewska, A., 4 May 2022, In: Neuro-Oncology. 24, 5, p. 669-682 14 p.

    Research output: Contribution to journalReview articlepeer-review

    Open Access
    2 Citations (Scopus)
  • Enzymatic activity of glycosyltransferase GLT8D1 promotes human glioblastoma cell migration

    Ilina, E. I., Cialini, C., Gerloff, D. L., Duarte Garcia-Escudero, M., Jeanty, C., Thézénas, M. L., Lesur, A., Puard, V., Bernardin, F., Moter, A., Schuster, A., Dieterle, M., Golebiewska, A., Gérardy, J. J., Dittmar, G., Niclou, S. P., Müller, T. & Mittelbronn, M., 18 Feb 2022, In: iScience. 25, 2, p. 103842 103842.

    Research output: Contribution to journalArticlepeer-review

    Open Access
  • Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Pati, S., Baid, U., Edwards, B., Sheller, M., Wang, S-H., Reina, G. A., Foley, P., Gruzdev, A., Karkada, D., Davatzikos, C., Sako, C., Ghodasara, S., Bilello, M., Mohan, S., Vollmuth, P., Brugnara, G., Preetha, C. J., Sahm, F., Maier-Hein, K., Zenk, M. & 259 others, Bendszus, M., Wick, W., Calabrese, E., Rudie, J., Villanueva-Meyer, J., Cha, S., Ingalhalikar, M., Jadhav, M., Pandey, U., Saini, J., Garrett, J., Larson, M., Jeraj, R., Currie, S., Frood, R., Fatania, K., Huang, R. Y., Chang, K., Balana, C., Capellades, J., Puig, J., Trenkler, J., Pichler, J., Necker, G., Haunschmidt, A., Meckel, S., Shukla, G., Liem, S., Alexander, G. S., Lombardo, J., Palmer, J. D., Flanders, A. E., Dicker, A. P., Sair, H. I., Jones, C. K., Venkataraman, A., Jiang, M., So, T. Y., Chen, C., Heng, P. A., Dou, Q., Kozubek, M., Lux, F., Michálek, J., Matula, P., Keřkovský, M., Kopřivová, T., Dostál, M., Vybíhal, V., Vogelbaum, M. A., Mitchell, J. R., Farinhas, J., Maldjian, J. A., Yogananda, C. G. B., Pinho, M. C., Reddy, D., Holcomb, J., Wagner, B. C., Ellingson, B. M., Cloughesy, T. F., Raymond, C., Oughourlian, T., Hagiwara, A., Wang, C., To, M-S., Bhardwaj, S., Chong, C., Agzarian, M., Falcão, A. X., Martins, S. B., Teixeira, B. C. A., Sprenger, F., Menotti, D., Lucio, D. R., LaMontagne, P., Marcus, D., Wiestler, B., Kofler, F., Ezhov, I., Metz, M., Jain, R., Lee, M., Lui, Y. W., McKinley, R., Slotboom, J., Radojewski, P., Meier, R., Wiest, R., Murcia, D., Fu, E., Haas, R., Thompson, J., Ormond, D. R., Badve, C., Sloan, A. E., Vadmal, V., Waite, K., Colen, R. R., Pei, L., Ak, M., Srinivasan, A., Bapuraj, J. R., Rao, A., Wang, N., Yoshiaki, O., Moritani, T., Turk, S., Lee, J., Prabhudesai, S., Morón, F., Mandel, J., Kamnitsas, K., Glocker, B., Dixon, L. V. M., Williams, M., Zampakis, P., Panagiotopoulos, V., Tsiganos, P., Alexiou, S., Haliassos, I., Zacharaki, E. I., Moustakas, K., Kalogeropoulou, C., Kardamakis, D. M., Choi, Y. S., Lee, S-K., Chang, J. H., Ahn, S. S., Luo, B., Poisson, L., Wen, N., Tiwari, P., Verma, R., Bareja, R., Yadav, I., Chen, J., Kumar, N., Smits, M., Voort, S. R. V. D., Alafandi, A., Incekara, F., Wijnenga, M. MJ., Kapsas, G., Gahrmann, R., Schouten, J. W., Dubbink, H. J., Vincent, A. JPE., Bent, M. J. V. D., French, P. J., Klein, S., Yuan, Y., Sharma, S., Tseng, T-C., Adabi, S., Niclou, S. P., Keunen, O., Hau, A-C., Vallières, M., Fortin, D., Lepage, M., Landman, B., Ramadass, K., Xu, K., Chotai, S., Chambless, L. B., Mistry, A., Thompson, R. C., Gusev, Y., Bhuvaneshwar, K., Sayah, A., Bencheqroun, C., Belouali, A., Madhavan, S., Booth, T. C., Chelliah, A., Modat, M., Shuaib, H., Dragos, C., Abayazeed, A., Kolodziej, K., Hill, M., Abbassy, A., Gamal, S., Mekhaimar, M., Qayati, M., Reyes, M., Park, J. E., Yun, J., Kim, H. S., Mahajan, A., Muzi, M., Benson, S., Beets-Tan, R. G. H., Teuwen, J., Herrera-Trujillo, A., Trujillo, M., Escobar, W., Abello, A., Bernal, J., Gómez, J., Choi, J., Baek, S., Kim, Y., Ismael, H., Allen, B., Buatti, J. M., Kotrotsou, A., Li, H., Weiss, T., Weller, M., Bink, A., Pouymayou, B., Shaykh, H. F., Saltz, J., Prasanna, P., Shrestha, S., Mani, K. M., Payne, D., Kurc, T., Pelaez, E., Franco-Maldonado, H., Loayza, F., Quevedo, S., Guevara, P., Torche, E., Mendoza, C., Vera, F., Ríos, E., López, E., Velastin, S. A., Ogbole, G., Oyekunle, D., Odafe-Oyibotha, O., Osobu, B., Shu'aibu, M., Dorcas, A., Soneye, M., Dako, F., Simpson, A. L., Hamghalam, M., Peoples, J. J., Hu, R., Tran, A., Cutler, D., Moraes, F. Y., Boss, M. A., Gimpel, J., Veettil, D. K., Schmidt, K., Bialecki, B., Marella, S., Price, C., Cimino, L., Apgar, C., Shah, P., Menze, B., Barnholtz-Sloan, J. S., Martin, J. & Bakas, S., 22 Apr 2022.

    Research output: Working paperPreprint

    File